196 research outputs found
Using fuzzy numbers and OWA operators in the weighted average and its application in decision making
Se presenta un nuevo método para tratar situaciones de incertidumbre en los que se utiliza el operador OWAWA (media ponderada – media ponderada ordenada). A este operador se le denomina operador OWAWA borroso (FOWAWA). Su principal ventaja se encuentra en la posibilidad de representar la información incierta del problema mediante el uso de números borrosos los cuales permiten una mejor representación de la información ya que consideran el mínimo y el máximo resultado posible y la posibilidad de ocurrencia de los valores internos. Se estudian diferentes propiedades y casos particulares de este nuevo modelo. También se analiza la aplicabilidad de este operador y se desarrolla un ejemplo numérico sobre toma de decisiones en la selección de políticas fiscalesWe present a new approach for dealing with an uncertain environment when using the ordered weighted averaging – weighted averaging (OWAWA) operator. We call it the fuzzy OWAWA (FOWAWA) operator. The main advantage of this new aggregation operator is that it is able to represent the uncertain information with fuzzy numbers. Thus, we are able to give more complete information because we can consider the maximum and the minimum of the problem and the internal information between these two results. We study different properties and different particular cases of this approach. We also analyze the applicability of the new model and we develop a numerical example in a decision making problem about selection of fiscal policies
"The connection between distortion risk measures and ordered weighted averaging operators"
Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and nite random variables is presented. This connection oers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.Fuzzy systems; Degree of orness; Risk quantification; Discrete random variable JEL classification:C02,C60
A Bibliometric Analysis of Operations Research and Management Science
Bibliometric analysis is the quantitative study of bibliographic material. It provides a general picture of a research field that can be classified by papers, authors and journals. This paper presents a bibliometric overview of research published in operations research and management science in recent decades. The main objective of this study is to identify some of the most relevant research in this field and some of the newest trends according to the information found in the Web of Science database. Several classifications are made, including an analysis of the most influential journals, the two hundred most cited papers of all time and the most productive and influential authors. The results obtained are in accordance with the common wisdom, although some variations are found.European Commission
PIEF-GA-2011-300062
Chilean Government
116028
Decision making techniques with similarity measures and OWA operators
We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management
Decision-making under risk and uncertainty and its application in strategic management
We introduce a new decision-making model that unifies risk and uncertain environments in the same formulation. For doing so, we present the induced probabilistic ordered weighted averaging (IPOWA) operator. It is an aggregation operator that unifies the probability with the OWA operator in the same formulation and considering the degree of importance of each concept in the aggregation. Moreover, it also uses induced aggregation operators that provide a more general representation of the attitudinal character of the decision-maker. We study its applicability and we see that it is very broad because all the previous studies that use the probability or the OWA operator can be revised and extended with this new approach. We briefly analyze some basic applications in statistics such as the implementation of this approach with the variance, the covariance, the Pearson coefficient and in a simple linear regression model. We focus on a multi-person decision-making problem in strategic management. Thus, we are able to construct a new aggregation operator that we call the multi-person IPOWA operator. Its main advantage is that it can deal with the opinion of several persons in the analysis so we can represent the information in a more complete way
OWA Operators in Generalized Distances
Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasi-arithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, et
OWA operators in human resource management
We develop a new approach that uses the ordered weighted averaging (OWA) operator in different methods for the selection of human resources. The objective of this new model is to manipulate the neutrality of the old methods, so the decision maker can select human resources according to his degree of optimism or pessimism. In order to develop this model, first, a short revision of the OWA operators is introduced. Next, we briefly explain the general model for the selection of human resources and suggest three new indexes for the selection of human resources that use the OWA operator and the hybrid average in the Hamming distance, in the adequacy coefficient and in the index of maximum and minimum level. The main advantage of this method is that it is more complete than the previous ones so the decision maker gets a better understanding of the decision problem. The work ends with an illustrative example that shows the results obtained by using different types of aggregation operators in the new approaches.
The induced generalized OWA operator
We present the induced generalized ordered weighted averaging (IGOWA) operator. It is a new aggregation operator that generalizes the OWA operator by using the main characteristics of two well known aggregation operators: the generalized OWA and the induced OWA operator. Then, this operator uses generalized means and order inducing variables in the reordering process. With this formulation, we get a wide range of aggregation operators that include all the particular cases of the IOWA and the GOWA operator, and a lot of other cases such as the induced ordered weighted geometric (IOWG) operator and the induced ordered weighted quadratic averaging (IOWQA) operator. We further generalize the IGOWA operator by using quasi-arithmetic means. The result is the Quasi-IOWA operator. Finally, we also develop a numerical example of the new approach in a financial decision making problem
- …