90 research outputs found

    In Consideration of the Behavioral Health of Police

    Get PDF

    Dependence of the BEC transition temperature on interaction strength: a perturbative analysis

    Full text link
    We compute the critical temperature T_c of a weakly interacting uniform Bose gas in the canonical ensemble, extending the criterion of condensation provided by the counting statistics for the uniform ideal gas. Using ordinary perturbation theory, we find in first order (TcTc0)/Tc0=0.93aρ1/3(T_c-T_c^0)/T_c^0 = -0.93 a\rho^{1/3}, where T_c^0 is the transition temperature of the corresponding ideal Bose gas, a is the scattering length, and ρ\rho is the particle number density.Comment: 14 pages (RevTeX

    Opioid Misuse: A Review of the Main Issues, Challenges, and Strategies

    Get PDF
    In the United States, from 1999 to 2019, opioid overdose, either regularly prescribed or illegally acquired, was the cause of death for nearly 500,000 people. In addition to this pronounced mortality burden that has increased gradually over time, opioid overdose has significant morbidity with se-vere risks and side effects. As a result, opioid misuse is a cause for concern and is considered an epidemic. This article examines the trends and consequences of the opioid epidemic presented in recent international literature, reflecting on the causes of this phenomenon and the possible strat-egies to address it. The detailed analysis of 33 international articles highlights numerous impacts in the social, public health, economic, and political spheres. The prescription opioid epidemic is an almost exclusively North American problem. This phenomenon should be carefully evaluated from a healthcare systems perspective, for consequential risks and harms of aggressive opioid prescrip-tion practices for pain management. Appropriate policies are required to manage opioid use and prevent abuse efficiently. Examples of proper policies vary, such as the use of validated question-naires for the early identification of patients at risk of addiction, the effective use of regional and national prescription monitoring programs, and the proper dissemination and translation of knowledge to highlight the risks of prescription opioid abuse

    High Salt Intake Down-Regulates Colonic Mineralocorticoid Receptors, Epithelial Sodium Channels and 11β-Hydroxysteroid Dehydrogenase Type 2

    Get PDF
    Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX

    A herbivore tag-and-trace system reveals contact- and density-dependent repellence of a root toxin

    Get PDF
    Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner. © 2017, Springer Science+Business Media New York
    corecore