481 research outputs found
Using trace element and halide isotopes to understand salinization mechanisms of groundwaters from an arid aquifer
Saline groundwaters are common to inland Australia, yet many aspects of their hydrochemical evolution remain uncertain. The saline groundwaters in the alluvial aquifers of the Darling River have previously been found to exhibit broad similarity in traditional hydrochemical and isotopic tracers. By contrast, trace element isotopes (δ7Li, δ11B and 87Sr/86Sr) and halide isotopes (δ37Cl and δ81Br) provide evidence of more complex hydrogeochemical processes.Hydrochemical evolution was found to be dependent on proximity to theDarling River and depth even though all groundwaters from this aquifer were found to be saline. The differing signatures highlighted the discovery of adeeper palaeo-groundwater system containing heavier trace element and halide isotope values. The measurement of these isotopes has permitted delineation of groundwater end-members and salinization mechanisms that would have otherwise not been identified
Groundwater residence time in the Kulnura-Mangrove Mountain Plateau (Gosford, NSW, Australia)
The Kulnura-Mangrove Mountain plateau consists of
the catchments of Mangrove, Narara, Mooney Mooney,
and Ourimbah Creeks, and Wyong River. Groundwater
plays a key role in sustaining stream flow within these
catchments. Estimates indicate up to 50% of annual
stream flow is derived from baseflow.
The local community water supply relies on the
groundwater within the elevated Hawkesbury-
Narrabeen sandstone plateau. Furthermore, the
Gosford-Wyong Councils’ Water Authority (WSA) is the
third largest in NSW and utilises many of the streams
flowing from the sandstone plateau for municipal water
supply. It is anticipated that the WSA will provide
municipal water for 319 000 persons by the year 2010.
The increasing volumes of groundwater being extracted
and changing land use have the potential to cause
damage to the fresh water aquifer through
contamination and aquifer depletion.
A hydrogeochemical survey (2006-2009) has been
conducted in NSW Dept of Water and Energy (DWE)
monitoring wells across the plateau in order to
determine groundwater residence times. Groundwater
was analysed for major ions, minor and trace elements,
H2O 18O and 2H, 13CDIC, 87Sr/86Sr, 14CDIC, and 3H,
and complemented with mineralogical and isotopic
information obtained from soil and drill chips collected
during well construction. Water stable isotopes confirm
the meteoric origin of the groundwater with most values
plotting on the local meteoric water line. Localised
evaporative trends suggest recharge with evaporated
groundwater stored in ponds.
Shallow groundwaters have 3H and 14C activities
consistent with modern recharge (Fig 1). Carbon “bomb
pulse” signatures of up to 116.8 pmC are found in the
central areas of the plateau. The thin soils, lack of
carbonates in the intensely weathered near-surface
Hawkesbury sandstone, and the shallow depth of the
water samples is consistent with the 3H results
measured, suggesting minimal dilution of the original
14C. Input of this data into a southern hemisphere bomb
pulse model [1] suggest potential recharge during the
1990´s, coinciding with sustained wet conditions and
above average rainfalls experienced during this period.
Fig. 1. 14C vs 3H plot of groundwater samples in the Kulnura-
Mangrove Mountain Plateau
Deeper groundwaters have lower 14C and 3H activities
in some cases close to background level (Fig. 1). The
quantifiable 3H suggests residence times of <70 a.
However, non-corrected 14C residence times are submodern
(>500 a). This apparent discrepancy can be
explained by either mixing with older waters or
dissolution of carbonates. The good correlation of total
dissolved inorganic carbon (TDIC) and Ca (R2=0.8),
13CTDIC in groundwater and mineralogy results from
drill chips suggest that dissolution of dispersed
carbonates is taking place.
The deepest groundwaters show the most difference in
residence time across the study area. The eastern and
western plateaus yield old groundwater with 14C
corrected residence times of around 9 ka and 4 ka
respectively. However, the groundwater at equivalent
depths in the central plateau was found to be
considerably younger with residence times of <70 a
A Comparison of Miltefosine and Sodium Stibogluconate for Treatment of Visceral Leishmaniasis in an Ethiopian Population with High Prevalence of HIV Infection.
BACKGROUND: Antimonials are the mainstay of visceral leishmaniasis (VL) treatment in Africa. The increasing incidence of human immunodeficiency virus (HIV) coinfection requires alternative safe and effective drug regimens. Oral miltefosine has been proven to be safe and effective in the treatment of Indian VL but has not been studied in Africa or in persons with HIV and VL coinfection. METHODS: We compared the efficacy of miltefosine and sodium stibogluconate (SSG) in the treatment of VL in persons in Ethiopia. A total of 580 men with parasitologically and/or serologically confirmed VL were randomized to receive either oral miltefosine (100 mg per day for 28 days) or intramuscular SSG (20 mg/kg per day for 30 days). RESULTS: The initial cure rate was 88% in both treatment groups. Mortality during treatment was 2% in the miltefosine group, compared with 10% in the SSG group. Initial treatment failure was 8% in the miltefosine group, compared with 1% in the SSG group. Among the 375 patients (65%) who agreed to HIV testing, HIV seroprevalence was 29%. Among patients not infected with HIV, initial cure, mortality, and initial treatment failure rates were not significantly different (94% vs. 95%, 1% vs. 3%, and 5% vs. 1% for the miltefosine and SSG groups, respectively). Initial treatment failure with miltefosine occurred in 18% of HIV-coinfected patients, compared with treatment failure in 5% of non-HIV-infected patients. At 6 months after treatment, 174 (60%) of the 290 miltefosine recipients and 189 (65%) of the 290 SSG recipients experienced cure; 30 (10%) of 290 in the miltefosine group and 7 (2%) of 290 in the SSG group experienced relapse, and the mortality rate was 6% in the miltefosine group, compared with 12% in the SSG group. HIV-infected patients had higher rates of relapse (16 [25%] of 63 patients), compared with non-HIV-infected patients (5 [5%] of 131). CONCLUSIONS: Treatment with miltefosine is equally effective as standard SSG treatment in non-HIV-infected men with VL. Among HIV-coinfected patients, miltefosine is safer but less effective than SSG
Burden of visceral leishmaniasis in villages of eastern gedaref state, Sudan: an exhaustive cross-sectional survey.
Since December 2009, Médecins Sans Frontières has diagnosed and treated patients with visceral leishmaniasis (VL) in Tabarak Allah Hospital, eastern Gedaref State, one of the main endemic foci of VL in Sudan. A survey was conducted to estimate the VL incidence in villages around Tabarak Allah
Hypothyroidism stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation
Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration . Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets . Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation was reduced by T in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T, insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life.The project was funded in part by the Biotechnology and Biological Sciences Research Council (BB/HO1697X/1). S.E.H. was supported by a Nigel Groome PhD Studentship at Oxford Brookes University. S.E.H. was awarded a practical skills grant from the Society for Endocrinology and a travel grant from the Physiological Society to fund work at the University of Arizona
A seasonal cycle in the export of bottom water from the Weddell Sea
Dense water formed over the Antarctic continental shelf rapidly descends into the deep ocean where it spreads throughout the global ocean as Antarctic Bottom Water1, 2. The coldest and most voluminous component of this water mass is Weddell Sea bottom water1, 3, 4, 5, 6, 7. Here we present observations over eight years of the temperature and salinity stratification in the lowermost ocean southeast of the South Orkney Islands, marking the export of Weddell Sea bottom water. We observe a pronounced seasonal cycle in bottom temperatures, with a cold pulse in May/June and a warm one in October/November, but the timing of these phases varies each year. We detect the coldest bottom water in 1999 and 2002, whereas there was no cold phase in 2000. On the basis of current velocities and water mass characteristics, we infer that the pulses originate from the southwest Weddell Sea. We propose that the seasonal fluctuations of Weddell Sea bottom-water properties are governed by the seasonal cycle of the winds over the western margin of the Weddell Sea. Interannual fluctuations are linked to the variability of the wind-driven Weddell Sea gyre and hence to large-scale climate phenomena such as the Southern Annular Mode and El Niño/Southern Oscillation
Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure
In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness (KIc) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10−2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. KIc of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that KIc depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of KIc is the distribution of grains rather than inherent microcracks in these rocks
Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells
Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) β2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions
Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial.
BACKGROUND: Evidence has existed for decades that higher doses of rifampin may be more effective, but potentially more toxic, than standard doses used in tuberculosis treatment. Whether increased doses of rifampin could safely shorten treatment remains an open question. METHODS/DESIGN: The HIRIF study is a phase II randomized trial comparing rifampin doses of 20 and 15 mg/kg/day to the standard 10 mg/kg/day for the first 2 months of tuberculosis treatment. All participants receive standard doses of companion drugs and a standard continuation-phase treatment (4 months, 2 drugs). They are followed for 6 months post treatment. Study participants are adults with newly diagnosed, previously untreated, smear positive (≥2+) pulmonary tuberculosis. The primary outcome is rifampin area under the plasma concentration-time curve (AUC0-24) after at least 14 days of study treatment/minimum inhibitory concentration. 180 randomized participants affords 90 % statistical power to detect a difference of at least 14 mcg/mL*hr between the 20 mg/kg group and the 10 mg/kg group, assuming a loss to follow-up of up to 17 %. DISCUSSION: Extant evidence suggests the potential for increased doses of rifampin to shorten tuberculosis treatment duration. Early studies that explored this potential using intermittent, higher dosing were derailed by toxicity. Given the continued large, global burden of tuberculosis with nearly 10 million new cases annually, shortened regimens with existing drugs would offer an important advantage to patients and health systems. TRIAL REGISTRATION: This trial was registered with clinicaltrials.gov (registration number: NCT01408914 ) on 2 August 2011
Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?
The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are represented by just a handful of digital records
- …