44 research outputs found

    Iron absorption from ferrous fumarate in adult women is influenced by ascorbic acid but not by Na2EDTA

    Get PDF
    Ascorbic acid and Na2EDTA enhance Fe absorption from the water-soluble Fe compound FeSO4 but their effect on poorly water-soluble Fe compounds such as ferrous fumarate is less well established. In the present study, the effects of ascorbic acid and Na2EDTA on Fe absorption from ferrous fumarate were evaluated in adult women (ten women/study) from the erythrocyte incorporation of Fe stable isotopes (57Fe or 58Fe) 14 d after administration. Two separate studies were made with test meals of Fe-fortified infant cereal (5 mg Fe/meal). Data were evaluated by paired t tests and the results are presented as geometric means. In study 1a, the comparison between Fe absorption from ferrous fumarate- and FeSO4-fortified cereal showed that adult women absorb Fe as well from ferrous fumarate as from FeSO4 (3·0 and 3·1 % respectively, P=0·85). After addition of Na2EDTA (Na2EDTA:fortification Fe molar ratio of 1:1), Fe absorption from FeSO4 was significantly higher than from ferrous fumarate (5·3 v. 3·3 % respectively, P<0·01; study 1b). In study 2, Fe absorption was compared from ferrous fumarate-fortified meals with and without ascorbic acid added at a 4:1 molar ratio (relative to fortification Fe) and the results showed that ascorbic acid increased Fe absorption from ferrous fumarate significantly (6·3 v. 10·4 %, P=0·02). The results of the present studies show that Fe absorption from ferrous fumarate is enhanced by ascorbic acid but not by Na2EDTA, thus emphasising that not all findings from Fe absorption studies made with FeSO4 can be extrapolated to Fe compounds with different solubility propertie

    A micronised, dispersible ferric pyrophosphate with high relative bioavailability in man

    Get PDF
    Ferric pyrophosphate is a water-insoluble Fe compound used to fortify infant cereals and chocolate-drink powders as it causes no organoleptic changes to the food vehicle. However, it is only of low absorption in man. Recently, an innovative ferric pyrophosphate has been developed (Sunactive Fe™) based on small-particle-size ferric pyrophosphate (average size 0·3 μm) mixed with emulsifiers, so that it remains in suspension in liquid products. The aim of the present studies was to compare Fe absorption of micronised, dispersible ferric pyrophosphate (Sunactive Fe™) with that of ferrous sulfate in an infant cereal and a yoghurt drink. Two separate Fe absorption studies were made in adult women (ten women/study). Fe absorption was based on the erythrocyte incorporation of stable isotopes (57Fe and 58Fe) 14 d after the intake of labelled test meals of infant cereal (study 1) or yoghurt drink (study 2). Each test meal was fortified with 5 mg Fe as ferrous sulfate or micronised, dispersible ferric pyrophosphate. Results are presented as geometric means. There was no statistically significant difference between Fe absorption from micronised, dispersible ferric pyrophosphate- and ferrous sulfate-fortified infant cereal (3·4 and 4·1 % respectively; P=0·24) and yoghurt drink (3·9 and 4·2 % respectively; P=0·72). The results of the present studies show that micronised, dispersible ferric pyrophosphate is as well absorbed as ferrous sulfate in adults. The high relative Fe bioavailability of micronised, dispersible ferric pyrophosphate indicates the potential usefulness of this compound for food fortificatio

    The Ursinus Weekly, December 14, 1972

    Get PDF
    Chemotherapist speaks to Pre-med group • Messiah performance successful • Union Board of Governors holds organizing meeting • Special convocation grants degree • Board of Control meets to select Weekly editors • Ursinus Judo Club jumps into action • Editorial: Life; Victim of a third class system • In retrospect: The Fantasticks is musical for everyone • Fidler on the wax: Zappa, The Grand Wazoo • The Bear Squad • Bear hoopsters drop pair • Grapplers open season • W. A. A. sponsors activity clinic • Non-skid floor rough on ankles! • Water wonders workout daily • U.C. hosts polo clinichttps://digitalcommons.ursinus.edu/weekly/1094/thumbnail.jp

    Heat Shock Protein-Derived T-Cell Epitopes Contribute to Autoimmune Inflammation in Pediatric Crohn's Disease

    Get PDF
    Pediatric Crohn's disease is a chronic auto inflammatory bowel disorder affecting children under the age of 17 years. A putative etiopathogenesis of Crohn's disease (CD) is associated with disregulation of immune response to antigens commonly present in the gut microenvironment. Heat shock proteins (HSP) have been identified as ubiquitous antigens with the ability to modulate inflammatory responses associated with several autoimmune diseases. The present study tested the contribution of immune responses to HSP in the amplification of autoimmune inflammation in chronically inflamed mucosa of pediatric CD patients. Colonic biopsies obtained from normal and CD mucosa were stimulated with pairs of Pan HLA-DR binder HSP60-derived peptides (human/bacterial homologues). The modulation of RNA and protein levels of induced proinflammatory cytokines were measured. We identified two epitopes capable of sustaining proinflammatory responses, specifically TNF〈 and IFN© induction, in the inflamed intestinal mucosa in CD patients. The responses correlated positively with clinical and histological measurements of disease activity, thus suggesting a contribution of immune responses to HSP in pediatric CD site-specific mucosal inflammation

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic variability in complement activation modulates the systemic inflammatory response syndrome in children

    No full text
    Objective: To determine the impact of genetic variability in complement activation on early development of the systemic inflammatory response syndrome (SIRS) in general pediatric critical care. Design: Prospective, observational, cohort study. Setting: A tertiary pediatric intensive care unit in the United Kingdom. Patients: Children with at least one organ failure expected to stay in the intensive care unit >12 hrs, or an expected death within 12 hrs. Interventions: None. Measurements and Main results: A total of 299 children were genotyped for functional polymorphisms in the complement activation cascade. We identified complement factor H as an important independent genetic modifier of SIRS/sepsis. Homozygosity for the complement factor H Y402H polymorphism, which is thought to reduce complement inhibition, was associated with less frequent SIRS/sepsis (the adjusted odds ratio for the homozygous variant complement factor H Y402H [CC] carriers was 0.3, 95% confidence interval, 0.1–0.7, p = .005). We also confirmed that structural and promoter variant mannose-binding lectin genotypes are a risk factor for SIRS/sepsis in pediatric critical care (adjusted odds ratio, 2.5; 95% confidence interval, 1.3–5.0, p = .008). Both findings were independent of clinical characteristics and other potentially confounding genetic polymorphisms in the innate immune system. Conclusions: Functional polymorphisms in the complement activation cascade modify the risk for early SIRS/sepsis in general pediatric critical care. The complement factor H Y402H variant allele is protective, whereas the mannose-binding lectin variant polymorphisms increase risk. A genotype that permits vigorous complement activation to an infectious or inflammatory insult may offer protection from development of systemic inflammation
    corecore