3,043 research outputs found
Methods for Combining Payload Parameter Variations with Input Environment
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented
Effect of damping on excitability of high-order normal modes
The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs
Methods for combining payload parameter variations with input environment
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented
The effects of localized damping on structural response
The effect of localized structural damping on the excitability of higher order normal modes of the large space telescope was investigated. A preprocessor computer program was developed to incorporate Voigt structural joint damping models in a NASTRAN finite-element dynamic model. A postprocessor computer program was developed to select critical modes for low-frequency attitude control problems and for higher frequency fine-stabilization problems. The mode selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensors, and on image-plane motions due to sinusoidal or random power spectral density force and torque inputs
Mode superposition in multi-degree of freedom systems using earthquake response spectrum data
Dynamic responses of a series of typical three-degree of freedom structures to strong-motion earthquake excitation were calculated by analog computer techniques and were compared with approximate responses obtained by a superposition of individual modes derived from response spectrum curves. The results indicate that a suitably weighted average of the sum of the absolute values of the individual modes and the square root of the sum of the squares of the modes will give a practical design criterion for the base shear forces in multi-story buildings. For critical designs, this weighted average reduces to the absolute sum of the modes, which is found to be close to the true value for a significantly high proportion of typical earthquake-structure combinations
Recommended from our members
Cloud clearing techniques over land for land surface temperature retrieval from the Advanced Along Track Scanning Radiometer
We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014)
Green Symbiotic Cloud Communications: Virtualized Transport Layer and Cognitive Decision Function
The evolution of the concept of cloud communications has posed a growing emphasis on virtual and abstract environments for the flow of information, structuring it in similitude to a natural cloud. The Green Symbiotic Cloud Communications (GSCC) paradigm created on this concept facilitates the use of multiple communication mediums concomitantly creating a first of its kind communication cloud. This paper specifically corroborates a virtualized transport layer and network ports and an abstracted Internet protocol scheme in defining the GSCC architecture. We further address the issue of formulating a cognitive decision function based on utility theory, which allows users with GSCC enabled devices to intelligently distribute its bandwidth requirement amongst the available communication mediums. Considering the multiple criteria associated with different networks we formulate an optimization problem to find the solution for this resource allocation problem for single user. We further address the multi-user scenario and formulate and solve the multi-objective optimization problem using goal attainment technique. Results in single and multiple user scenarios, demonstrate that by utilizing multiple mediums as per GSCC paradigm coupled with our proposed decision function improves the functionality of the communication cloud. The proposed architecture is dynamic and evolving, embedding greenness by efficiently utilizing the available resources as and when required. The multiple virtual links equate a linearly increasing relationship with the throughput achieved. Experimental results for both real time and static data through the proposed schematic are documented. The augmented paradigm enhances the quality of service, linearly increases throughput and increases the overall security in communications
Effect of various dopant elements on primary graphite growth
Five spheroidal graphite cast irons were investigated, a usual ferritic grade and four pearlitic alloys containing Cu and doped with Sb, Sn and Ti. These alloys were remelted in a graphite crucible, leading to volatilization of the magnesium added for spheroidization and to carbon saturation of the liquid. The alloys were then cooled down and maintained at a temperature above the eutectic temperature. During this step, primary graphite could develop showing various features depending on the doping elements added. The largest effects were that of Ti which greatly reduces graphite nucleation and growth, and that of Sb which leads to rounded agglomerates instead of lamellar graphite. The samples have been investigated with secondary ion mass spectrometry to enlighten distribution of elements in primary graphite. SIMS analysis showed almost even distribution of elements, including Mg and Al (from the inoculant) in the ferritic grade, while uneven distribution was evident in all doped alloys. Investigations are going on to clarify if the uneven distribution is associated with structural defects in the graphite precipitates
Compliance error compensation in robotic-based milling
The paper deals with the problem of compliance errors compensation in
robotic-based milling. Contrary to previous works that assume that the
forces/torques generated by the manufacturing process are constant, the
interaction between the milling tool and the workpiece is modeled in details.
It takes into account the tool geometry, the number of teeth, the feed rate,
the spindle rotation speed and the properties of the material to be processed.
Due to high level of the disturbing forces/torques, the developed compensation
technique is based on the non-linear stiffness model that allows us to modify
the target trajectory taking into account nonlinearities and to avoid the
chattering effect. Illustrative example is presented that deals with
robotic-based milling of aluminum alloy
The Context of Temporal Processing Is Represented in the Multidimensional Relationships between Timing Tasks
In the present study we determined the performance interrelations of ten different tasks that involved the processing of temporal intervals in the subsecond range, using multidimensional analyses. Twenty human subjects executed the following explicit timing tasks: interval categorization and discrimination (perceptual tasks), and single and multiple interval tapping (production tasks). In addition, the subjects performed a continuous circle-drawing task that has been considered an implicit timing paradigm, since time is an emergent property of the produced spatial trajectory. All tasks could be also classified as single or multiple interval paradigms. Auditory or visual markers were used to define the intervals. Performance variability, a measure that reflects the temporal and non-temporal processes for each task, was used to construct a dissimilarity matrix that quantifies the distances between pairs of tasks. Hierarchical clustering and multidimensional scaling were carried out on the dissimilarity matrix, and the results showed a prominent segregation of explicit and implicit timing tasks, and a clear grouping between single and multiple interval paradigms. In contrast, other variables such as the marker modality were not as crucial to explain the performance between tasks. Thus, using this methodology we revealed a probable functional arrangement of neural systems engaged during different timing behaviors
- …