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ABSTRACT

Methods are presented for calculating design limit loads compatible with
probabilistic structural design criteria. The approach is based on the
concept that the desired "limit Yoad," defined as the largest loéd occurring
in a mission, is a random variable having a specific'probability‘distribution
which may be determined from extreme-value theory. The 'design limit load,"
defined as a particular value of this random limit load, is the value
conventionally used in strugtural design. Methods are presented for deter-
mining the 1imit load probability distributions -from both time-domain and
frequency-domain dynamic load simulations. Numerical demonstrations of the

methods are also presented.
KEY WORDS

Monte Carlo method
probabilistic loads
probabilistic structural design criteria

extreme-value theory .

structural design loads
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1.0 INTRODUCTION

The purpose of this report is to describe and numerically demonstrate methods
for combining payload parameter variations with the input environment in
probabilistic structural design loads analyses. . The design ]oadsiresu}ting
from these methods are compatible with probabilistic structural dé;ign criteria.
The approach is based on the concept that the desired "limit load," defined

as the largest load occurring in a mission, is a random variable having a
specific probability distribution which may be determined from the extreme-
value theory of probability. The ''design limit Joad,'" defined as a particular
value of this random limit load, is the value conventionally used in structural

design.

The scope of this study was limited in three generzl areas. First, no attempt
was made to include the effects of structural fatigue. The technical theory _
is concerned only with structural designs corresponding to the single applica-
tion of an extreme load to an undamagéd structure. Second, no attempt was
made to define rationale for selecting acceptable probabilities of failure

to be used in the structural design criteria. Third, the technical theory

is concerned only with the preliminary design/redesign/design verification
phases of a project. No attempt was made to address the inverse problem of

operational constraints and decisions.

A discussion of a proven general probabilistic structural design approach
is presented in Section 2.0 along with some basic results of extreme-value
theory which are particularly applicable to structural loads. Section 3.0
presents methods for determining extreme-value limit-load probability
distributions from conventional time-domain and frequency-domain dynamic
loads analyses. Numerical demonstrations of each of these methods are
presented in Section 4.0. Conclusions from the present research and
recommended areas for future research are presented in Section 5.0. A
comprehensive list of references and appended listings of two computer pro-

grams complete this report.



2.0 THEORETICAL BACKGROUND

The concept of a randomly varying limit load described by a theoretically
correct probability distribution and the use of a particular value of

this random limit load for structural design purposes are of basic import-
ance in probabilistic structural design criteria. Since the limit load

is conventionally defined as the largest load occurring in a mission,

the probability theory of extreme values is useful in determining the
ﬁheoretical]y correct limit-load probabitity distribution. Section 2.1
contains some basic results of extreme-value theory which are particularly
applicable to structural loads. Since the determination of probabilistic
structural loads is meaningful only within the larger context of structural
design, Section 2.2 includes details of the application of probabilistic

load guantities in a general structural design approach.



2.1 Limit-Load Probabitity Distributions

The limit load for a structural component is conventionally defined as the
largest load occurring during a given mission. The probability that the

component load x is the largest value among n independent observations is
defined by

e (x) = [F(x)]" m

where F(x) is the underlying cumulative distribution function (CDF) for the
load. Thus én(x) is, by definition, the cumulative distribution function

of the limit load for a mission which has n independent occurrences of applied
load. The probability theory of extreme values, as presented by Gumbel
(Reference 1), is concerned with describing the limit-load distribution

function (Qn) for various forms of the underlying distribution (F).

Two parameters frequently used in extreme-value theory are the characteristic
lafgest value and the extremal .intensity function. The characteristic
largest value (un) in a sample of n observations is defined by Gumbel

(Reference 1, page 82) in terms of the following equation:
-1 - L :
Flu ) =1 - (2)

vhere F(un) is the underlying CDF evaluated at the characteristic largest value.
Thus, as indicated by Equation (2}, u is that value of the random variable
which will be equalled or exceeded one time in n observations, on the average.
The extremal intensity function (an) in a sample of n observations is defined
by Gumbel (Reference 1, page 84) as follows:
f{u)
a = n (3)

n ]“Fiunj
where f(un) is the underlying probability density function (PDF) and F(un) is
the underlying CDF, both evaluated at the characteristic largest value. The

inverse of the extremal intensity function, calied Mill's ratio, is tabulated

by K. Pearson for the normal distribution (Reference 2, page 11).



The underlying distribution F(x) is said to be of the exponential type if
f(x) approaches zero for large [x] at_least as fast as the exponential

distribution, f(x) = Ae—lx. For any distribution of the exponential type,
Gumbel (Reference 1, page 168) shows that the CDF for large x is approx-

imately equal to

-an(x-dh)

(&)

F(x) =1 - %-

An asymptotic distribution of extreme largest values can be obtained by

substituting Equation (4) into Equation (1) and taking the. 1imit as n

-2 {x~u_J7" '
o, M) = m[ ke ] (5)

becomes infinite

nee

Evaluating this limit by means of the logarithmic series results in the
first asymptotic distribution of extreme largest values, subsequently

called the extremal type | distribution:

~a_(x-u_)
(b(l)(x) = exp(—e " n) (6)
The corresponding PDF, which is positively skewed, is given by
~a_ {x-u_)
86 = o exp [-an(mn) e “] (7)

The most probable value or mode (mo) of this distribution is equal to the

characteristic largest value:
m o= u (8)

The fifty-percentile value or median (me) is given by

m = u-- 20(2800.5) = u + 0.36651292 (9)
e n a o
n n
The mean (m) is
m=u, * fe (10)
%

where CE = 0.57721566 is Euler's constant.



The standard deviation {s) is given by

i

V6

n

5 =

()

and the coefficient of variation (V = s/m) is

V= u (12)
/glanun + CE)

Equations (10) through (12) define parametric values for the extremal type
| distribution corresponding to a single mission. Parametric values for

the largest load occurring in N missions are as follows:

my = m +‘i§§ ZnN-s (13)
sy =S (14)'
_ v
Vy (15)

) {1 + L/—_;E’: 2nN-V)

These relations are derived in Reference 3 (page 67). Note that the
standard deviation (s) and the extremal intensity function (an) for the

extremal type | distribution are theoretically independent of sample size.

According to Gumbel (Reference 1, page 182) the extremal type | distribution
is often satlisfactorily represented by the lognormal distribution. The
lognormal distribution with coefficient of variation equal to 0.364 is
essentially identical to the extremal type ! distribution. For coefficients
of variation between 0.31 and 0.42, the extremal and lognormal distributions
are graphically indistinguishable. An example of the validity of the log-
normal‘%pproximation to the extremal type | distribution is given in Reference
L. For this analysis, 28 sets of internal load guantities were calculated

as the maximum values experienced in each of 100 simulated lunar landings.

A Chi-square test of the hypothesis that the loads were lognormally dis-
tributed resulted in cumulative probabilities ranging from 5 to 30 percent.
The lognormal approximation was therefore considered acceptable since the

Chi-square probabilities were less than 90 percent for all 28 internal load

REPRODUCIBILITY OF THE
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quantities. The Chi-square hypothesis is usually accepted for cumulative
probabilities as high as 9% percent. The coefficients of variation for

these load quantities varied between 0.2 and 0.4.

The extremal type | distribution, defined by Equations (6) through {15},
is the theoreticaf]y proper distribution for limit loads due to any con-
dition having an exponential-type underlying probability distribution and
a sufficiently large number of independent load occurrences. For the
exponential distribution, convergence to the asymptotic extremal type |
distribution is essentially complete for 100 observations (Reference 1,
page 116). For the normal distribution, however, convergence to the
asymptotic type | distribution is extremely slow. According to Fisher and
Tippett (Reference 5, page 188), close convergence is attained only for
sample sizes on the order of 1055. Such large samples correspond to
characteristic largest values of the standardized normal variate, hereafter

designated an, on the order of 16.

Accurately describing extreme values from an underlying normal distribution
is necessary due to the central role of the normal distribution in engineer-
ing applications. For very large values of Gn’ the theoretical distribution
of normal extremes converges to the extremal type | distribution. Let the
underlying normal distribution of interest have mean u and standard devia-
tioh o so that the normal standardized variate is defined as y = (x-u)/o.
The type | distribution function for standardized normal extremes is then

-a {y - un)

é(t)(y) = exp(-e ) (16)

where

-2u + 100 "5 (17)
n n

The expression for the standardized normal extremal intensity function of

Equation (17) is derived by Gumbel (Reference 1, page 137).

A second representation of the distribution of standardized normal extremes
was proposed by Fisher and Tippett (Reference 5 ). The proposed CDF is of the

form



~k
+ B3¢y = exp[-( X ]

u (18)
CH 1)2 _
where k = ——/—-— (13)
(w?-1
n
This general form is denoted by Gumbel {(Reference 1, page 298) as the
third asymptotic distribution of extreme values or the extremal %ype 111
distribution. By inverting Equation (18), approximate percentage points
for extremes of the standardized normal variate are obtained as follows
in terms of the cumulative probability, p:
X -y ~ _ an{-2np)
y = S—==expiin u - T (20)

A special characteristic of this extremal type |Il distribution is that it
converges for increasing values of the parameter k toward the extremal type
] distribution. Thus, in practice, the extremal type 111 distribution may
be used to represent the distribution of normal extremes for all values of

~

u greater than 5.

The theoretical distribution of extreme largest values from variously sized
samples of standardized normal variates was tabulated by K. Pearson in Ref-
erence 2, (page 162). Plots of these tabulated values on lognormal pro-
bability paper suggest that the theoretical distribution of normal extremes )
may be adequately approximated by the lognormal probability distribution.”
In fact, the theoretical distribution plots essentially as a straight line
on lognormal probability paper for standardized characteristic largest
values (Gn) of approximately 2.16. This value of Gn corresponds to a sample
size (n) of approximately 65. For other values of Gn’ the theoretical dis-
tribution of normal extremes may be .approximated by a lognormal distribution
which matches the theoretical distribution at the fifty-percentile and 99.9
percentile values of the logarithms. Figure 2.1-1 illustrates the approxi-
mation involved for the theoretical distribution having ﬁn equal to 3.03902.
This theoretical distribution corresponds to the largest sample size (n=1000)

used for the K. Pearson tables.
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The lognormal PDF may be written for the standardized normal extreme

variate {y) as

) 1, 2ny~y 2
fly) = exP-EC—-—‘g—l) {21)

2w 8y

where vy s the mean of 2ny and

8§ Is the standard deviation of 2ny.

The parameter y may be simply expressed in terms of the median (?) of the

standardized normal extreme as follows:
Yy =2y (22)

U
The standardized -extreme median {y) for n samples is defined by the following

equation:
IFI" = 0.5 ' (23)

Combining Equations (2) and (23) to eliminate n gives the following desired

. v, ~
exact equation for y in terms of u

F7) = expl{zn 0.5) (1-F (3 )] (24)
where F is the normal CDF.

The slope parameter & is defined arbitrarily in terms of the 99.9 percentile

value of the logarithm of y as follows:

8 = ltnly ggq)~v1/K goq (25)

where K 999 = 3.0902 is the 99.9 percentile value of the standardized
normal CDF.

Values of v, §, and Rn(y'sgg) versus Gn are presented in Table 2.1-1. The
values in this table are based on the K. Pearson tables (Reference 2 , page
162} for the lower values of Gn and on the extremal type Ill approximation
(Equation 20) for the higher values of Gn. The accuracy of the valtues in

Table 2.1-1 is believed on the order of +0.001 due primarily to interpolation

i
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Table 2.1-1:

Lognormal Approximation to

Standardized Normal Extremes

u Y § 2y ggq) 8% fenly ggq)*
1.2816 | 0.406 | 0.295 | 1.317 0.2957 1.320
1.6449 0.602 0.246 1.361 D.2454 1.360
1.8339 0.693 0.224 1.386 0.2234 1.3832
2.0538 0.790 0.202 1.413 0.2010 .41
2.3264 0.901 0.178 1.45% 0.177¢6 1.450
2.5758 0.993 0.160 1.486 0.1595 1.486
2.7131 1.042 | 0.150 | ~1.505 0.1507 1.508
2.8071 1.073 0.145 1.520 0.1450 1.521
2.9352 1.114 0.137 1.538 0.1378 1.540
3.0234 1.142 D.132 1.550 0.1332 1.554
3.0802 1.162 0.129 1.560 0.1298 1.563
7.0 1.953 0.0408 2.079 0.0400 2.077
8.0 2.085 0.0314 2.182 0.0314 2.182
9.0 2.202 0.0250 2.279 0.025] 2.280

10.0 2.306 0.0207 2.370 0.0203 2.363
11.0 2. 401 0.0170 2.45h 0.0167 |, 2.h453
12.0 2.487 0.014k4 2.532 0.0140 2.53D
4.0 2.641 0.0106 2.674 0.0106 2.674
16.0 2,774 0.0082 2.799 0.0090 2.802

10




errors. The logarithm of the median (y) computed from the type 111 dis-
tribution was found to be within +0.001 of the "exact' value computed
from Equations (22) and (24) for al) Gn greater than 7.0. The standard-
lzed characteristic largest values (Gn) corresponding to the sample size
(n) in Pearson’s tables are determined from Equation {2) using linear
interpolation of the logarithms of the tabulated normal cumulative pro-

babilities.

A functional relationship between § and Gn was established by a least-
squares analysis of the data in Table 2.1~1. The functional relationship,

valid for Gn less than 16, is as follows:
& = D.0019Y ﬁn ~ 0.0633 + 0.6634 G;] - 0.2648 6;2 (26)

The two columns of Table 2.1-1 labeled 6% and zn(y.999)*'are based on the
relationship of Equation (26). These data indicate that the least-squares
fit is sufficiently accurate for practical purposes. Figure 2.1-2 i]lustratés
the numerical behavior of the slope parameter (§) as a function of Gn' If de-
sired, Ya]ues of 6 for Gn exceeding 16 can be obtained directly from

Equations (20) and (25). |

Percentage points of the lognormal approximation to the distribution of
normal extremes are obtained as follows in terms of the cumulative probabil-

ity, p:

Yy = §§H-= exp(y+KP'6) (27)

where u and o are the mean and standard deviation of the under-
lying normal distribution,
v is defined by Equations (22) and (24),
§ is defined by Equation (26), and
K_is the px100 percentile va]ué of the standardized

P
normal CDF.

1
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A lognormal approximation for normal extremes is described by Equations {21)
through (27). The extreme median'(y) is determined exactly, while the higher
percentile values are approximated ade&uately by an equivalent slope param-
eter (§). The lower percentile values are approximated less well, as shown

in Figure 2.1-1, but these may be of less importance in practical applica-
tions.

13



2.2 Probabilistic Structural Design Criteria

The extended reliability structural design approach proposed by Ang and

Amin (Reference 6 ) recognizes both the probabilistic nature of limit loads
and strength and the analytlcal uncertainties associated with their evalua-
tion. The uncertainties associated with determining limit loads and
strengths can be quantified by a factor of uncertainty (v) equal to or
greater than unity. Thus the event (S/L > v) constitutes a state of struc-
tural safety, where S and L represent the strength and limit load associated
with a structural component. The positive and negative values of a load
(such as tension and compression in a rod) must be considered as two separate
load quantities in two separate structural components. {f S and L are both
random var iables, then the probability PIS/L > v] is a proper measure of struc-
tural safety. The extended reliability structural design approach is then
expressed by the following probabilistic equation for structural séfety:

P2Vl =1-P, (28)

where S is the random variable describing the component strength,
L Is the random variable describing the component 1imit load,
v_is the Ang~Amin coefficient of uncertainty for the component,

and PFis the component probability of failure or acceptable risk.

Vhen the limit-load and strength probability density functions are known,

the structural design approach may be expressed in two equivalent forms:

y/v
1 - PF = fL(x) . fs(y) dx dy (29)
©  ux
P = ) fs(y) . fL(x) dy dx (30)

where fL(x) is the limit-load probability density function (PDF), and
fs(y) is the strength PDF.

The conventional factor of safety is defined as the ratio of the allowable

strength (SA) to the design limit load {LD):

14



_ A
FS = T (31)

D

S

where SA is the value of ‘the random strength corresponding to a
specified exceedance probability (PA), and
LD is the value of the random limit load corresponding to

a specified non-exceedance probability (PD).

The purpose of the factor of safety in the structural design procedure is

to locate the strength PDF relative to the given limit-load PDF so that
Equation (29) or (30) results in the required component probability of
failure. This concept is illustrated in Figure 2.2-1. For most probability
distributions, the integral of Equation {23) or {30) must be evaluated
numerically and the required factor of safety determined by trial-and~error
procedures. However, for certain specific distributions, closed-form evalua-

tions leading to convenient design formulas are possible.

A particularly convenient design factor-of-safety equation occurs when botH
limit loads and strengths are assumed to follow the lognormal probability law.
As discussed in Section 2.1, the lognormal distribution often accurately
represents the theoretically proper distribution for limit loads. Moreover,
for much existing strength data, the lognormal distribution also is a
satisfactory representation, due perhaps to the deletion of low-strength

values by quality-control procedures.

The component factor-of-safety expression for lognormal limit loads and

strengths is derived in Reference 3 in the following form:

S
FS = 1_}3.= v*exp -[F—](PF) ﬁ,ﬂn[(i + VLZ)(] + VSZ)J (32)

D
+ ‘i"](PD) ?Jﬂn(l + v]_z) + F_}(PA) *Jﬁ.n(l + vsz)]

where v is the Ang-Amin coefficient of uncertainty,
PF is the probability of failure or acceptable risk,
is the non-exceedance probability for design limit load (L,),

is the exceedance probabitity for allowable strength (SA)’

15
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VL and VS are limit-load and strength coefficients of variation,

F-I(P) is the inverse of the standardized normal cumulative

distribution function given by

F )

)i -

1.2
P=— e 2

tgt (33)

The numerical behavior of the lognormal/lognormal factor of safety is shown
graphically in Figure 2.2-2. For this plot, the defining probabilities for
design limit load and allowable strength are both taken as 99 percent, and
the coefficient of uncertainty is taken as unity. The factor of safety Is
seen to increase monotonically with decreasing probability of failure for

given load and strength coefficients of variation.

From Equation (32), the component factor of safety corresponding to a
specified probability of failure may be computed. The allowsble strength
is then determined, from Equation (31), as the product of the factor of
safety times the design limit load. Additional details regarding the
application of this probabilistic design approach are presénted in Ref-
erence 3. Procedures for determining the basic limit-locad probability
distributions from which the specific design limit load is selected are

discussed in the following section.

17
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3.0 METHODOLOGY DEVELOPMENT

Structural dynamic analyses resulting in design limi't loads may be performed
either in the time domain or in the frequency domain. The Taylor's series
method and the Monte Carlo method are two widely used techniques for deter-
mining limit loads from time-domain analyses. The Taylor's series method,
described in Section 3.1, is an extension of the parameter variation study
often performed to evaluate sensitivity to parémetric data uncerﬁéinties.

The Honte Carlo method, described in Section 3.2, is a simulatioﬁ of the
loading condition using a random combination of vehicle parameters and environ-
ments. For each load quantity of interest, the maximum value occurring in
each simulated mission is identified and recorded. 'The maximum load data from
a number of simulated missions approximates the desired extreme-value 1imit-
load distribution. Two methods are described for efficiently determining
conservative estimates of limit-load probability distributions from Monte

Carlo analyses.

In Section 3.3, a new method is presented for determining the extreme-value
limit-load distribution from a frequency-domain analysis using power spectral
density techniques. This method determines the probability distribution of
the extreme largest load value, for a stationary Gaussian random process,
occurring within a given mission duration. An approach is described in
Section 3.4 for estimating the total limit-load probability distribution by
combining the results from time-domain and frequency-domain analyses. Section
3.5 describes methods for treating mass and stiffness variations and exper-

imental data uncertainties.
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3.1 Limit Loads from Taylor's Series Analyses

A detailed discussion of the use of the Taylor's series method to estimate
limit~load probability distributions for aerospace launch vehicles is
presented by Lovingood (Reference 7). This application involves first
analytically simulating the structural loads and responses éncountered by a
nominal launch vehicle flying through a moderately severe synthetic wind
profile. The resulting loads are considered to be‘the nominal or mean
values for the limit load probability distribution. The peak or design
limit load values, which are defined as the '3-¢" values having non-exceedance
probabilities of 0.9987, are next obtained by computing the variations in
load due to 3-¢ variations in the significant vehicle parameters, taking
the root-sum-square variations of each load quantity, and adding these to

the corresponding mean values.

This method is useful for efficiently predicting preliminary and interim
structural design loads. However it has the disadvantage of requiring a
synthetic wind profile defined such that the mean values of all the limit

loads of interest-are produced by the amalytical simulations. Besides the

difficulty of defining this proper synthetic environment, the Taylor's
series method is based on three fundamental assumptions which may not be
valid for particulér applications. These assumptions will be discussed in
the brief derivation which follows. A similar derivation in Reference 7 is

somewhat more detailed.

The distribution of a nonlinear function of several random varjables may be
obtained by approximating the desired function as a linear function in the
region of interest. The mean and standard deviation of a linear function

of several independent rgndom variables are known from elementary probability
theory (Reference 8, page 48). |If X], Xz, vee, Xn are independent random

. . . 2 2
variables having means Mis Mys vuey m and variances S] 2 Sy s caey S

n
respectively, and if @15 gy een, a  are constants, then a linear random

function may be defined as follows:
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f(x],xz, ., xn) = aX) FaX, b ek a X (34)

The mean of T is

me =a, m + a, m, + tee 4 a, ™ (35)

Thus the mean of a linear combination of random variables is equal to the
linear combination of the means. This result is valid even if the X's are

dependent.

The variance of f is

2 2 2 2.2 . 2,2 (36)

Thus the variance of a linear combination of independent random variables
is equal to the sum of the products of variances and squared constants. In
addition, if the X's are normally distributed, then f is also normaltly

distributed with mean me and variance sfz.

A nonlinear function may be expanded in a Taylor's series about any given

point as follows (Reference 8, page 62):

f(xlsxzs “ Xn) = f(m] smzr Tt mn)
+ (X, -m) 2L R
] ! axl m,m,, "°°, m
‘l’ 2’ 2 n
+ (X - m) 2f + higher order terms (37)
n n® 9X ...
] m, s M

If the higher order terms are negligible, the mean of f is, according

to Equation (35), approximately equal to:
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me X Flm,my, =0, m ) (38)

tf, in addition, the X's are independent, the variance of f is, accordin
9

to Equation (36), approximately equal to

12
2+ 2 laf
S¢S [ax]_ IR B
1*2° ' Th
+52[3f 12 5
n |aX - 39
n m],mz, ’an

Futhermore, if the X's are normally distributed, f is approximately normally
distributed. If the X's are normally distributed and if the function is
linear so that Equation (37) contains no higher order terms, then the mean
and variance are exactly as given by Equations (38) and (39) and the
theoretical distribution of the function is the normal distribution (Refer-

ence 9, page 90).

The three assumptions in the use of the Taylor's series method are as

follows:

(I) that the higher-order terms in the Taylor expansion are negligible
Compared with the first-order terms,
(2) that the X's are independent, and

(3) that the X's are normally distributed.
The accuracy of designﬂlimit loads determined by the Taylor's series method

depends in part upon how well the particular physical simulation is

represented by these three assumptions. In Section 4.1, a discussion of
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the effects of these assumptions is presented along with numerical
demonstrations of the method. So long as the potential disadvantages

of this method are recognized, it remains an efficient and useful tool

for estimating preliminary and interim design limit loads.
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3.2 Limit Loads from Monte Carlo Simulations

The Monte Carlo method is a powerful and general tool for predicting struc-
tural design loads. The method has been gaining wider acceptance for

dynamic load studies of aerospace vehicles (References 4, 10, 1, 12 ).

For this application, the method consists essentially of simulating a random
loading phenomenon by combining deterministic and probabilistic variables.

The limit-load probability distribution for each load quantity is then the
distribution of the largest loads occurring in each simulated mission. For
the launch vehicle load simulations described in Reference 10, the determin-
istic variables included such vehicle parameters as mass and gecmetry, struc-
tural dynamic characteristics, propellant slosh parameters, and control- ]
system parameters.- The probabilistic variables for this study were restricted
to descriptions of the wind environment. The winé was represented both by
detailed measured wind profiles including turbulence and by filtered measured
wind profiles with the turbulence considered separately using power spectral
depsity (PSD) methods.

In general, probabilistic variables may include any factors not determin-
istically known, including initial conditions, propulsion characteristics,
alignment tolerances, and mass properties. For time-domain simulations,
sample values of individual random variables may be.generated using digital
random number generators such as those described in References 13 and 14.
Sample time histories of random processes such as wind turbulence can be
generated from PSD data using the technique described in Reference 15. Of
course, actual sample values or sample time histories from test data may be

used directly as the random inputs to a Monte Carlo time~domain simulation.

As shown in. Section 3.1, the variance of a function of several random
variables increases as the number of variables increases. Similarly, the true
function variance (62) of a load quantity determined from a2 Monte Carlo
analysis increases with the number of random variables included in the sim-
ulation. Since the results of a Monte Carlo loads analysis are treated
statistically as measured data, the sampling variances of the parameters of

interest decrease with the number of replications. For example, if the true

24



function variance of a normally distributed load is known to be 02, the
sampling variance of the mean is cz/n_where n is the number of Monte Carlo
replications {Reference 8, page 50). The number of replications is thus
seen to affect the sampling variance, not the true function variance. Once
the probabilistic variables required to represent a physical loading
phenomenon are defined, the idealized true function variance is fixed.
Monte carlo estimates of this and other parameters may then be made as
accurate as desired simply by increasing the number of replicatiéns.
Statistical techniques, such as those described in this section, provide
measures of the accuracy of the estimates in terms of the number of

replications.

A major consideration in the general app]icatioﬁ of the Monte Carlo method
is to reduce the required cost of simulation as much as possible. In
Reference 16 (page 146}, H. Kahn describes several such techniques. Two -
of these {Russian Roulette and Use of Expected Values) have been used
successfully in structural load analyses. Russian Roulette involves con-
centrating the computational effort on cases of special interest. For a
tanding dynamics analysis, the cases of interest may be those having the
largest initial kinetic energy which therefore result in the largest struc~
tural loads. For a flight loads analysis, the cases of interest may be
those having the wind profiles resuiting in largest loads; the critical
profiles are identified using very greatly simplified flight simulations.
These cases identified as being of special interest are then analyzed using
the more detailed simulation methods. The Use of Expected Values is merely
a separation of computational tasks into what can be efficiently calculated
analytically and what must be simulated by Monte Carlo methods. An example
of this teéhnique is the separation of the wind profile into small-scale

" turbulence (efficient]y treated by PSD methods) and large-scale variations

as described in Reference 10,

Tvio different'téchniques have been developed for obtaining conservative
estimates of the limit-load probability distributions from Monte Carlo analyses.

Both techniques are based on the generally valid representation of random
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1imit loads by the lognormal probability law. The least-squares estimation
method may be used to obtain conservative estimates of the mean and standard
deviation from a censored sample. The statistical estimation method may be

used to obtain conservative estimates of the normal mean and standard

deviation from a small random sample.
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3.2.1 Least-Squares Estimation Method

The Russian Roulette technique applied to a flight loads analysis results

in the k largest loads from a total sample of n cases. Two different
methods for estimating the mean and standard deviation from such a censored
sample of normal variates are described by Gupta in Reference 17. The max-
imum~likel ihood method for censored samples results in estimators which are
consistent, asymptotically normally distributed, and efficient {Reference 18,
page 524). However, when the k observed loads comprise a small percentage
of the total sample of n loads, the variances and covariances of the max-
imum-likelihood estimates are quite large. For example, according to data
presented by-Gupta (Reference 17, page 263), the variance of the maximum-
likelihood estimate of the mean based on k/n = 0.05 is 2.6 times the cor-
responding variance based on a random sample of size k with o known. An
alternate method for estimating normal parameters from a censored sample is

designated the least-squares estimation method.

The unbiased linear estimates of the normal mean and standard deviation
based on a least-squares approach is derived as follows by Gupta (Reference

17, page. 268) for the k largest observations in a total sample of size n:

E{y}, = [BI{}) (40)

where E{y}_k is the vector of expected values of the k

largest ordered variates, and

B1- |1 Ko
L
bRy
L
p, = —— e 2 ~ dt
Y Vam

¢ o
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The desired linear estimates are then obtained by solving Equation (40)
for the values of y and ¢ which provide the best fit in the least squares

sense:

{“‘y*i = (BT Ty, ()
g %
b4

Equation (41) may be written in terms of two coefficient vectors as follows:

k

myf-' = 12:1 bi-yi k=2,3,"",n (42)
k

Sy* = z cl y] k = 2,3,"',n (l‘}3)

Since these linear estimates are unbiased, the coefficients satisfy the

following conditions:

I
—_

k
S b, (4h)
i=l

c, =0 (45)

i N =

i=]
The required percentage points of the standardized normal CDF (K_ ) may be
obtalned from tables such as those in Reference 8 (page 555) and &eferencé 19
(page 34). The probabilities (pi) corresponding to the k largest ordered
variates may be determined either as mean plotting positions or conservative
plotting positions based on nonparametric statistics. The mean plotting
position recommended by Gumbel (Reference 1, page 34} for most standard
applications of extreme-value theory is defined by

- _ (nt1-i) . -
Py =~ for 1 = 1,2, , k (46)
Equation (46) has the advantages of simplicity and consistency between the
high and low extreme values. As an example of the consistency of the mean
plotting position, the smallest observation of 200 has an assigned probabil~
ity of 0.0050 while the largest has a probability of 0.9950,
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Conservative plotting positions may be established from the standard one-
sided nonparametric confidence 1imit as derived in Reference 4. The con-
servative estimates of p; corresponding tc confidence level B are obtained

from the following equation:

n

. b, n-j
= - .n. . ns' ! f 1 = o, ses
B P j=nZH-i itin-1)! ( P or | 1,2, K (47)

An approximate expression for the conservative estimates of P; is based on

the normzl approximation to the binomial probability law:

ES | . 2 2, 0s_ay. g Nl
b, A, [2(n+KBZ£];2(n+] i) + KB KB‘JKB +4(i-1)-{ — )

for i = 1,2, -*- k (48)

where KB is the B x 100 percentile value of the standardized normal CDF.

The least-squares estimation method for determining the 1imit-load probability
distribution from the k largest of n Monte Carlo observations is described )
as follows for each load quantity of interest:
(1) Order the natural logarithms of the k largest observed loads in
decreasing order (i.e., i =} for the largest load).
(2) Dpetermine plotting positions by one of two alternate methods:
(a) For a given confidence level {B), calculate the conservative
plotting positions (pi) for each observed load from Equations {47}
and (48); or (b) Calculate the mean plotting positions (Bi) for each
observed load from Equation (46).
(3) .Form the [B] matrix defined by Equation (40) by interpolating the
percentage points of the tabulated normal CDF corresponding to the k
plotting positions (pi)'
() Calculate the coefficient vectors by the matrix operations of
Equation {41).
(5) For each load quantity of interest, use the coefficient vectors
and the vector of k ordered loads to calculate the mean and sténdard

deviation of the logarithms according to Equations (42) and (43).

29

P THE
RODUCIBILITY O
gégéINu¥L'PA£HEIS POOR



This least-squares estimation method provides estimates of the lognormal
parameters of limit loads determined from the k largest of n Monte Carlo
simulations. Any degree of conservatism in the estimated parameters is,
of course, dependent on the confidence level {8) chosen. A numerical

demonstration of this method is presented in Section 4.2.1,

in the design phase of a program, the Russian Roulette technique may be
used to determine a set of Timit loads for a specific mission. If certain
aspects of the mission change, a second set of 1imit loads may be determined.
To evaluate the beneficial or detrimental effects on loads of the mission
changes, an approximate hypothesis test is recommended. This test evaluates
the hypothesis that the means of the two normal distriibutions are equal.

The linear estimates for the mean and standard deviation for both sets of
loads are determined using the mean plotting positions {(Equation 46) and
the coefficients defined by Equation (41). Let the first set of limit loads
be designated by "a'"' and the second set b§ b, The approximate test of

the hypothesis that I is.described by Bowker and Lieberman {Reference
8, page 173). The test statistic is given by

(o= " 7 My

.2 w2
[sa" /ng * 5% /nb]

” (49)

and the associated degrees of freedom are

ot 2 2, 42
Vo= [sa Ing + 5% /nb]

(Sa*zfna)?+ (Sb*zlnb)2
(n_+1) (nb+l)

-2 (50)

where m* and s* are given by Equations (42) and (43). The reduced

sample size (n) may be approximated by
n = n/A ‘ {51}

where X is given by Table 3.2-1
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Table 3.2-1: Factor for Effective Sample Size
of Censored Samples

Source: A. K. Gupta (Reference 17, page 263)

k/n A

0.05 51.58
0.10 17.79
0.15 9.26
0.20 5.78
0.25 | 4.02
0.30 3.02
6.35 2.40
0.0 1.99
0.45 1.71
0.50 1.52
055 | 1.38
0.60 1.27
0.65 1.20
0.70 1.17
0.75 1.09
0.80 1.06
0.85 1.04
0.90 1.02
0.95 1.01
0.97 1.00
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The factor A tabuléted in Table 3.2-1 as a function of the ratio of
censored sample size (k) to effective total sample size {n) is taken from
Gupta (Reference 17, page 263}. This factor represents the sampling

variance of the maximum-likelihood estimate of the mean of a censored

sample.

According to Bowker and Lieberman (Reference 8, page 17k}, the criteria for

rejection of the hypothesis that By =y is as follows:

l . . - -
[t ] z_tu/z;v if we wish to reject when My s not equal to g
Vs . . . .
t —-ta;v lf we wish to reject when Hy > Wy
Ve - . . X < )
t' < tsv If we wish to reject when My < omy

Percentage points of the t distribution are tabulated for example, in

Bowker and Lieberman {(Reference 8, page 558).
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3.2.2 Statistical Estimation Method

Another technique which may be used successfully for determining probabil-
istic design limit loads js the statistical estimation method. As an ex-
tension of the normal confidence limit concept, this method is based on -the
generally valid representation of random limit loads by the lognormal pro-
bability law. The standard expression of the one-sided normal confidence
limit as derived In Reference 4 is valid for Monte Carlo samplies of 50 or
more observations. This expression can be simply modified as follows to

be valid for samples as small as 20 cbservations.

Let Yis You 770 5 Y, be n iIndependent observations of a normal random
variable with mean my and standard deviation Sy' The unbiased estimates of

the sample mean and variance, which are stochastically independént, are

given by
1 n
myn = ;'I-. ig] yi (52)
.1.2__ _!__ '-n - Sk 2
Sy T A1 g (yi " (53)

According to Wilks {(Reference 20, page 208}, the sample mean (m?) is normally
distributed with mean (my) and standard deviation (sy/n) and the sample
variance is distributed as follows '
22
g % 2
(1) Lo (54)

s n
) - Y
The Chi-square distribution with k degrees of freedom (Xi) is approximately
normal for large k {Reference 20, page 189). However, a much more rapidly
converging approximaticn is given by Bowker and Lieberman {Reference 8 ,
page 556):

‘, zxzk n normal (VZk-1, 1) {55)

The close convergence of this approximation for 20 degrees of freedom is

shown in Figure 3.2-1. Combining Equations (54) and (55) results in the
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following approximate distribution for the sample standard deviation for n
as small as 20:

. 2n-3 °y
e N(sy\}%_z , ) (56)

VZin—lj

Define the true a x 100 percentile load by

Fa = my + Ku'sy (57)
where ] Ka _1{2
: o0 = —— e 2~ dt
v |

The statistical estimate of Fa is

;‘ =m % + Krg &% (58)
Y Y <

From Equations (35}, (36), and (56), the mean and variance of F are

By 2n-3 Cred
ELFY = m, "+ Ks 508 _(59)_
- ¢ 2 w2.s 2 :
F1 = Y Y ) -
var[F] = iy e (60)

The one-sided confidence limit equation is )
PIF, < Fl =8 (61)

Equation (61) implies that

F - EIF]
Y S - S ~ (62)
B WariF]
where )
[-+] _ ]_ 2
B = [ e 2 £ de
..KB

Substituting Equations (57), (59), and (60) into Equation (62) and solving
for the appropriate root of K yields
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K, -/C +Ke YB+A/n

K = . (63)

where A = C-KBZ/Z(q-I)
B = Ka2/2(n—i)'
¢ = {(2n-3)/(2n-2)

Equation (63) may be used with Equation (58) to determine the one-sided

confidence 1imit for any probability level (a) and confidence level (8)

so long as the sample size (n) is at least 20.

The statistical estimation méthod for use in estimating the limit load

probability distribution from at least 20 unbiased Monte Carlo observa-

tions is described as follows for each load quantity of interest:

(1) Calculate the sample mean and standard deviation of the natural
logarithms of the observed ioads using Equations (52) and (53)
12) Calculate éhe one~sided confidence limits Tor several different
probability levels (e) for a given confidence level (8) using

Equations (58} and (63}

I

Fla1,8) = my* + Klal,8) - Sy*
- = W K2 s . I
F(a%,B) my + K{a2,8) Sy

.

+ .

{3} Solve for the mean aﬁd standard deviation of the logarithms which

provide the least-squares fit to the following equations:

E(a] 18)

my(s) R sy(B)

it

Fla2,8) my(s) * K, sy(s)

. -
- .

° . .

{4) Convert my(B) and sy(s) to legnormal mean mX(B) and coefficient of

variation VX(B) using the following standard expressions
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V(8 = fexp (s ()% - 117 (65)

m_ (8) [+ Vx(s)z};ﬁ' exp(my(s)) (65)

Equations (64) and (65) are consistent with the following notation:
Y = ¢n X

where X ~ lognormal (mx, Vx = sx/mx

Y n~ normal ,
norma (my sy)

This statistical estimation method provides conservative estimates of the

lognormal parameteré of limit loads determined from at least 20 Monte Carlo-
‘simutations. The degree of conservatism in the estimated parameters is, of
course, dependent on the confidence level {B) chosen. The estimated param-
etrlc values are also somewhat dependent on the particular probability
levels {ai) chosen for the least-squares fit. A numerical demonstration of
this method is presented in Section 4.2.2. A computer program for perform-
ing the necessary calculations is listed in Appendix |. The program is

written in FORTRAN 1V for use with the WATFOR compiler {Reference 21).
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3.3 Limit Loads from Frequency - Domain Simulation

In the practical solution of random vibration problems, the dynamic char-
acteristics of a structural system are usually assumed to be linear and
deterministic, and the excitation is assumed to be random. Furthermore,

the random excitation is usually assumed to be stationary,ergodic,and Baussian
with zero mean value, since the random process -for the response can then

be completely characterized by its power spectral density functioh (Reference
g, page 89). Solutions to two random vibration problems for this special
case of stationary Gaussian response are available in the literature (Ref-
erence 22 page 293). The threshold-crossing problem is concerned with the
expected rale at which a random process X(t) exceeds a certain value. The
peak-distribution problem is concerned both with.the probability distribu-
tion of peak magnitudes in X(t)} and with the expected rate of occurrence of
the peaks. However, neither of these available solutions provides the .
extreme~value probability distribution required for probabilistic ultimate
strength design. The objective of the present study is to determine the
probability distribution of the extreme largest value, for a stationary and ergddic
Gaussian random process X(t), occurring within a given mission length. This
required limit-load probability distribution will be expressed in terms of

the power spectral density function {P$D) of the calculated load.

The real autocorrelation function associated with a real-valued stationary

random process X{t) may be defined by

T
Rxx(-:) = %_'}2 % X(t) X {t+) dt 66)

-T

Equations relating the autocorrelation function and the power spectral
density function (PSD) are known as the Wiener-Khintchine relations (Ref-
erence 23, page 579). For a real-valued random process, such as the random

load in a structural member, the defining equations may be written
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as follows:

R(t) = J G(w) coswr dw (67)
)

Glw) = %—J R{t) coswt dT (68)

0 ;

where G{w} is the load PSD with frequency () in radians/second.

The iocad PSD may alternatively be written with frequency in Hz as follows

R{z) = T{f) cos2qfr df (63)
0
T(f) = 4 J R{t) cos2afr dt (70) .
b

where f = w/2w% in Hz.
For some applications, the Ioéd PSD may be more Convenient]y defined in
terms of spatial frequency {radians per unit distance) and spatial distance
instead of circular frequency (radians per second) and time. Equations (67}_
and (68) with appropriate anotation changes may be used as the defining

Wiener-Khintchine relations for such applications.

Vith no loss of generality, a stationary random process may be assigned a
zero mean value. The variance of such a real-valued randem process is
obtatned from Equations (67) and (69) by evaluating the autocorrelation

function for zero time lag,

O [++)

R(0) =62 = | Glu)dw = | r{f).df (71)
0 0
Equations (66) through (7)) form a consistent set of definitions for use in
harmonic analysis of stationary random processes. Since many authors use
alternate forms of the Wiener-Khintchine relations (Reference 23, page 580),

special care is required when applying formulas for random vibration analysis.
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Standard methods are available for computing the PSD of loads in a linear
structure due to stationary Gaussian excitation (References 22, 2L 25),
The output response P50 for the rtb calculated load quantity is given by

the following general equation:

6 (w) = [L_.%(ju)] Io  Gu)l{L, (o)} (72)

where {Lir(jw)} is the column matrix of complex frequency responses

th

for the r™ load quantity and for 1 excitation points,

I}ri*(jwl] is a row matrix of the complex conjugates of Lir(jm)’

and

IGf(jm)] is the PSD matrix of input power spectral density
functions for each of the | excitation points and cross-

power spectral densities between the excitation points.

The following development converts the Gaussian load PSD typically defined py .
Equation (72) into an extreme-value 1imit-load probability distribution

required for probabilistic structural design.

The critical parameter in the three distributions used for describing
extreme normal variates is the characteristic largest value (u). Its
magnitude increases with sampte size until, as n becomes very targe, it con-
verges to the most probable value (mode) of the asymptotic extremal type |
distribution (Reference 1, page 172). However, as described in Section 2.1,
the convergence of the normal extremes to the type | distribution is so slow
that the lognormal and extremal type i1l distributions must be used for small
and moderately sized samples. The following development is based on expres-
sing the characteristic largest value in terms of Rice's theorem for the

expected number of threshold crossings per unit time.

According to Rice {Reference 26 page 192), the expected rate of zero
crossings from below for a stationary Gaussian process with zero mean is
given by -
£2 1) df 2
EIN, (0) = | -2 (73)
r(f) df ‘
0
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With the PSD defined In radians per second {or radians per unit distance)},

f” w? G{w) dw 172

0 (1)
G(v) dw

0

Equation (73) becomes

EIN, (0)] = 5

L
With the random structural load PSD defined by Equation {60) the integrals
of Equations (73) and (74) will converge whenever the input PSD has a finite

variance.

The equation for the expected number of times per unit time or distance that
the Gaussian load passes through the threshold value (&) with positive slope

is given by Rice (Reference 26, page 193) as follows:

EIN, (£)] = EIN,_(0)] exp Cl‘i—z-) (75)
- 20
where E[N+(O)] is defined by Equation (73) or (74) and
o® is defined by Equation (59).

Equation (75) may also be found in Reference 22{page 297), Reference 25 (page
42), and Reference 27 (page 5.121) among many other sources. It is restricted
to stationary Gaussian random processes having zero mean values. Since the l
Gaussian model is commonly used to represent inflight atmospheric turbulence
(Reference 27, page 5.116) and transonic buffeting (Reference 24), this

restriction is not significant to most current engineering applications.

The expected number of threshold crossings in a given time or distance

interval (T) is obtained simply by modifying Equation (75) as follows:
.-.Ez
EIN (&)1 = T-EIN_(0)] exp( =5 ) (76)
. 2
where T defines the length of a mission.
The conventional characteristic largest value in a sample of size n, is

defined as foliows by Gumbel (Reference 1, page 82): '"in n observations,

the expected number of values equal to or larger than ¥ is upnity.'" Thus, for .

"an ergodic process, the characteristic largest value for a mission of length T
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is determined from Equation (76} by setting the expected number of threshold
crossings to unity. The required characteristic largest value for the stand-

ardized normal variate is then
. u 1/2 ’
6= L= 02 enlTEIN, (0)D)] (77)

where ¢ is defined by Equation (53) and
E[N+(0)] is defined by either of Equations (73) or (74).
The -characteristic largest value for a stationary and ergodic Gaussian random
process having zero mean is sufficient to completely define the theoretical

and approximate probability distributions for normal extremes.

The theoretical extreme-value probability distribution for normal extremes

is given by

6, (x) = [F()1° (1)

where F{(x) is the normal CDF.

The exponent is simply determined by inverting Equation- {2) as follows:
]

n = —— (78) .
1-F (u) ’
where F(0) is the normal CDF evaluated at u, and

G is defined by Equation (77).
The theoretical distribution of Equation (1) is obviously not suitable for
most engineering applications. Since, as discussed in Section 2.1, the con-
vergence of normal extremes to the type | asymptotic extreme-value distribu-
tion is extremely slow, either the extremal type Il approximation (Equation
20) or the lognormal approximation (Equation 27) is required for practical
application. For the case of mean zero and standard deviation ¢ for the
underlying Gaussian random process, the percentage points of the lognormal

approximation are obtained as follows:

2n x = Rn(y'c} + KP-G (79)

where § = 0.00199 u -0.0633 + D.6634 0 | -0.2648 2 (26)

and ? is determined from

FY) = expl{2n 0.5) (1-F(1))] (24)

i
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This lognormal approximation will be used in the numerical demonstrations
of Section 4.3.
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3.4 Limit Loads from Combination of Time-Domain and Frequency-

Pomain Analyses

Combining loads from time-domain and frequency-domain analyses of aerospace
vehicles is appropriate when, for example, the effects of small-scale wind
turbulence are considered separately by power spectral density (PSD) methods.
As described in Section 3.2 and Reference 10, "treating the large-scale and
small-scale wind variations by separate techniques can significgﬁt]y improve
the efficiency of the total loads analysis. With this approach, boost loads
due to large-scale wind variations may be caiculated with Monte Carlo
techniques using filtered measured wind profiles. Similarly, nominal
maneuver loads exclusive of wind turbuienceeffects may be calculated

using static aercelastic analyses; statistical variations may be included

by the Taylor's series method described in Section 3.1. Total limit loads
may then be defined as the stochastic combination of such time-domain loads
{from either Monte Carlo or Taylor's series analyses) with turbulence loads

from separate PSD analyses.

Rigorously determining the extreme-value distribution for the general case
of two stochastic processes in combination is beyond the scope of this effort.
However, a practical approach is developed for approximate solutions to
idealized boost and maneuver locading conditions. For thé boost condition,
the extreme total load is assumed to occur simultaneously with the peak

load from the time~domain analysis; the magnitude of this extreme load is
then assumed to be modified slightly by the contribution from the frequency-
domain ana]ys}s. For the maneuver condition, the extreme total load is )
assumed to occur simultaneously with the peak load from the frequency-domain
analysis, since the contribution from the time-domain analysis is assumed
essentially constant. These assumptions are discussed in more detail in the

following descriptions.of the approach.

The boost load condition is characterized by short-duration transient loads
which are large relative to random turbulence loads. According to Reference
25, (page 23), peak loads on typical aerospace launch vehicles due to wind
shear act for less than one second and may be several times as great as the

accompanying turbulence loads. A method for determining total l1imit loads

L
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for the boost condition is to combine the extreme load from the time-domain
analysis with the instantaneous random turbulence load. The extreme -
transient load (X) is adequately represented by the lognormal probability
law and the instantaneous turbulence load (Z) is normally distributed

with zero mean. The desired.total load is then the stochastic sum of Z

and X.

This approach is sufficiently accurate for turbulence loads less than about
20 percent of the total load and for transient loads acting for a relatively
short time duration. If the time duration (T) over which the peak transient
load is considered constant corresponds to a standardized characteristic
largest value (Equation 77) much less than unity, then the extreme-value
distribution derived in Section 3.3 is adequately represented by the normal
distribution of the instantaneous turbulence load. The error involved in
approximating the proper extreme-value distribution by the instantaneous
turbulence load distribution for u = 1 is approximately 15 percent at the
99.9 percentile level (Reference 1, page 129). So long as the turbulence
load itself is a relatively insignificant percentage of the total load,

this error may be neglected and the approasch considered sufficiently

accurate for engineering purposes.

The maneuver load condition is characterized by aercelastic loads which are
essentially constant over a time duration (T) and which are not significantly
larger than the random turbulence loads. A method for determining total
1imit Yoads for the mansuver condition is to combine the extreme load from
the frequency-domain analysis with the ''steady-state'' load from a time-
domain analysis. The extreme turbulence load (X) occurring in the specified
time duration (T) is adequately represented by the lognormal probability law
as indicated in Section 3.3. The "'steady-state' load (Z) may be assumed to
follow the normal distribution with small variance. The desired total load

is again the stochastic sum of a lognormal and a normal variate.

This approach is sufficiently accurate for 'steady-state'' maneuver loads
which have relatively small variance and which act for a relatively long

duration compared to the effective frequency of the random turbulence loads.
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If the "steady-state' loads have a coefficient of variation less than about
ten percent, then these loads may be considered essentially constant and
the normal distribution assumption with the Taylor's series method is an

acceptable approximation regardless of the actual distribution.

The distribution for the total limit load defined for the boost and maneuver
conditions may be determined by numerical integration of the standard con-
volution intedra]. The total 1imit load is herein defined as the sum of

two independent variables
TL =2 + X (80)

where Z ~ normal (mz, SZ)

X ~ lognormal {m,, VX).

As described in Section 3.1, the mean of the sum of two random variables is
the sum of the means. And the variance of the sum of two independent
random variables is the sum of the varjances. Thus, from Equation (80),

the exact equations for the parameters of the total limit load are

(81) .

s. % =s?4ep? oy (82)

The convalution integral resulting Tn the probability density function (PDF)

of TL is given as follows by Parzen (Reference 28, page 317):

{23

fTL(t) = dxfx(x)'fx(t-x) (83)

with X and Z defined as in Equation (80), the convolution integral becomes

® 1 2 ft-x-m,\2
1 dx =~ =i anx- Z
Ll = o 5-52[ Elad 2[("‘%) *(‘;Z—*” (&

oo
vihere Yy and & are, respectively, the mean and standard deviation
of &n X ' )
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The PDF of the total limit load at any specified value of t is obtaincd by
integrating Equation (84). The cumulative distribution function (CDF) is
obtained, of course, by integrating the resulting PDF. A computer program
for performing the necessary calculations is listed in Appendix Il. The

program is written in FORTRAN IV for use with the WATFOR compiler {Reference
21),

£
Numerical examples consistent with the limitations used to definé the
idealized boost and maneuver loading conditions are presented in Section
b.4, These results indicate that the perturbation of the predominant
lognormatl distribution by the normal distributién is relatively insignif-
icant for the numerical limitations assumed. Therefore, for these specific
loading conditions, the distribution of the total load is adequately
represented by the lognormal probability law with parameters given by
Equations (81) and (82). -
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3.5 ADDITIONAL TOPICS
3.5.1 Payload Mass and Stiffness Variations

In most Monte Carlo dynamic load analyses, such as those described in Ref-
erences 4, 10, 11, and 12, structural dynamic characteristics are assumed
to be deterministic rather than random. This is partly because the effects
of variatioﬁs in mass or stiffness properties may often be considered neg-
ligible relative to the effects of other variables in the simulation. |If
the mass and/or stiffness variations are considered significant, the random-
ness of these structural dynamic characteristics may be included most
simply by using the Taylor's series method in conjunction with the Monte
Carlo simulation. With this approach, the limit-load probability distribu-
tions are calculated by a Monte Carlo analysis using nominal fixed values
for the structural dynamic characteristics. Then the approximate effects
on the limit-load variances may be estimated by the Taylor's series method
using hone-sigma“ values for the various structural dynamic characteristics
in a few typical loads cases of the Monte Carlo analysis. The additional
contributions due to payload mass and stiffness variations may then be
included in the l1imit-load probability distributions by Equations (81) and
(82) of Section 3.h. )

Values for the uncertainties in the mass and stiffness parameters of & finite-
element model may be determined as described in Reference 29. This procedure
attempts to account for both experimental and modeling uncertainty by adjust-
ing the structural model to fit measured modal data using a minimum-variance

criterion.
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3.5.2 Experimental Data Uncertainties

Two statistical models are presented for interpreting uncertainties in
experimental data. Both models, described in more detail In Reference 29,
result In least-squares estimates of a parameter vector {X} which are

linearly related to a vector of observations {Y} as follows:

{Y} = ITHX} + {e} (85)
where {e} is a ;ector of measurement errors.

The primary result is the best linear unbiased estimate of {X}, designated
{X*}, defined in terms of the estimation matrix [¥W] and the vector of

observations {Y} as follows:
) = DI _ (86)
The secondary result is the covariance matrix for this estimate defined by’
& & " T
chx"} = E[{x" - X}{X" = X} 1 (87)

The diagonat terms in the covariance matrix are, of course, the variances

of the Tndividual parameter estimates.

The first statistical model is based on the Timiting assumption that the true
parameter vector {X} is deterministic and the vector of observations {Y} is
random only because of the measurement errors {e}. For this case, the

estimation matrix [N]] is as follows:
_ T -1 -1 T -1
[Wll = ([T1] icee] {t}) "[7) [Css] (68)

where [CEE} is the covariance matrix of the measurement errors.
The corresponding covariance matrix for the estimate of the parameter vector
is . .
3 = . T 8
[eyy*] [”1][Cae]I“1] (89)

The results for® this model are derived in Reference 29 using both least-

squares and minimum-variance techniques. The least~squares weighting matrix
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is the inverse of the covariance matrix of the measurement errors. This
approach therefore assigns more weight to those measurements having small
measurement errors and less weight to those measurements having large measure-
ment errors. In addition, according to the minimum-variance criterion, the
estimation matrix defined by Equation (88) also minimizes the covariance
matrix of {X*} defined by Equation (89).

The second statistical model recognizes randomness in the true pdrameter
vector {X} as well as in the measurement errors {e}. For this case the

estimation matrix [wz} is as follows

T -1
IR I WAL W (s0)
vhere
[ey,d = IT)IC,,] 51
Ie,, = IT1Ie, 0717 + Ic ] (92)

Here the matrix [Cxx] is the estimate of the covariances of the true param-
eter vector {X} made prior to the availability of test data. The correspond-

ing covariance matrix for the estimate of the parameter vector is
Iy 1 = Ty, ] = [oyy1TIe, 17 Icy, ] (93)
XX XX YX YY YX

The results of this model are derived in Reference 29 using minimum-variance
techniques. Thus the estimation matrix defined by Equation (90) minimizes
the covariance matrix of {X*} defined by Equation (93). Since the estimation
matrix is inversely proportional to the covariance matrices of both the prior
estimates and the measurement errors, this approach zlso assigns most weight
to the most accurate estimates and measurements. This method accepts test
data to update the prior eslimate of a theoretical representation which in-
cludes the analyst's confidence in the representation. The method may be

applied sequentially if several sets of test data are available.
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k.0 NUMERICAL DEMONSTRATION

The methods previously described for determining limit-load probability
distributions from time-domain and frequency-domain analyses have certain
tTimitations which may be best illustrated by numerical examples. Section
4.1 presents three numerical examples of the Taylor's series method which
demonstrate the effects of the method's fundamental assumptions. Section
4.2 demonstrates the least-squares estimation method and the statistical
estimation method which may be used to reduce the reguired number of Monte
Carlo simulations. These numerical examples are based on sets of randem
numbers generated by a digital computer. The method for determining 1imit
loads from a frequency-domain analysis is demonstrated using numerical

data obtained from an analog Gaussian noise generator. Sectidn 4.3 presents
the results of several examples of this method. Two typical examples of the

random combination method are presented in Section 4.4.
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LI Examples of Taylor's Series Method

As discussed in Section 3.1, the Taylor's series method for estimating the
probability distribution of a nonlinear function of several random variables

is based on the following three assumptions:

(1) that the higher-order terms in the Taylor expansion of the function
are negligible compared with the first order terms,
(2) that the individual random variables are mutually independent, and

(3) that the individual random variables are each normaily distributed.

The following is a brief discussion of the implications of these assumptions
with numerical examples.

Consider a function of four random variables

f(W,X,Y,2) = wz-X/Y + Z

where W & normal (mw =20, s = 2y
Xnooo-- (mx =2,s5, = 0.57735)
Y o~ normal {m =2, s = 0.2)
Z ~ normal (mz =0,s_ = 50}

By the Taylor's series method, the estimates of the mean, variance, and

standard deviation of the function are as follows:

me ym© mx/mY +m_ = 400
2 2. o
2 2mw My \2 2 % 2 2 M M 2 2
S ~ +f — 5 + 5 + 5
f m v m X 2 y z
= 23,833
S. n 1544



The stochastic behavior of this function was studied for three different
cases. Case 1 involved dependent variables (pWY = -0.5} and a non-gorma]
variable with the variable X being uniformly distributed in the range |

to 3. Case 2 involved a non-normal variable (X~ U (1,3)) but all variables
were independent. Case 3 involved all normal and independent variables.

The mean and standard deviation and the cumulative distribution function

(CDF) were determined from a Monte Carlo simulation using a sample size of
2000 for each of the three cases. The Monte Carlo simulations were performed
with the Boeing Generalized Statistics Program (GESP) described in References
13 and 14, The resulting means and standard deviations are presented in
Table 4.1-1 for comparison with the Taylor's series estimates. Results of
significance tests of the hypothesis that the Monte Carlo parameters are
identical to the Taylor's series parameters are alsc presented in Table

L.1-1 along with the results of a Chi-square test for normal ity (Reference

8, page 366). The hypothesis test for the mean was performed using Student's
t statistic (Reference 8, page 127). The hypothesis test for the standard
deviation was performed using the Chi-square statistic (Reference 8, page 138).
The acceptance probebilities for such hypothesis tests are usually established
at either one percent or five percent levels. Values of the 37-degree-of-
freedom Chi-square statigtic corresponding to these probability levels are

59 and 52, respectively.

For this particular function, the Monte Carlo means and standard deviations
are seen to approach the Taylor's series parameters as the assumptions of
independence and normality of the individual variables are better satisfied.
The hypothesis tests indicate that the mean determined by the Taylor's series

method is sufficiently accurate regardless of normality and independence of
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Table 4.1-1

Numerical Evaluation of Taylor's

Series Method

2
Method me F PIYm > mf] P[YS > sf] X359
Taylor's series Loo.o 154.4 - - -
Monte Carlo .
Case | o9, 4 172.3 0.008 0 200, 1
Honte Carlo
Case 2 405.9 159.0 0.049 0.028 133.3

_ Monte Carlo )

Case 3 L402.8 156.8 0.210 0.164 127.6
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the individual random variables; the standard deviation determined by the
Taylor's series method is sufficient]§ accurate only when the individual

random variables are independent. However, for none of the three cases

was the hypothesis of normality verified by the Chi-square test. In Figure
4.1-1, the cumulative distribution function determined from the Monte Carlo
simulation for Case 3 is plotted versus the Taylor's series normal distribution

to illustrate the results of the Chi~square test.

These numerical examples are consistent with the theory discussed in
Section 3.1. An accurate estimate of the mean requires only that the
higher-order terms in the Taylor's series expansion are negligible, whereas
an accurate estimate of the variance requires the additional assumption of
independence among the individual random variables. All three assumptions
must be satisfied in order that the function be approximately norﬁal]y
distributed. For the function studied, the second and higher partial

* derivatives are negligible or zero except with respect to the Y variable.
The numerical influence of the neglected non-zero terms on the Taylor's

series estimate of the mean and standard deviation appears to be small.
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4.2 Examples of Monte Carlo Method

The following sections consist of numerical demonstrations of the least-
squares estimation method and the statistical estimation methoed. Both
numerical demonstrations are based on a simulated analysis in which the
limit load is defined as the largest load occurring in 100 independent
observations of a standardized normal variate. By means of the GESP
random number generator (References 13 and 14), 2000 simulated 1imit
loads were generated. The limit-load distribution was approximately log-

normal (Pfx§7 > 49] = 0.095) with mean equal to 2.509 and coefficient of
variation equal to 0.1715.
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L.2.1 Examples of Least-Squares Estimation Method

As described in Section 3.2.1, the least-squares estimation method is a
technique for conservatively estimating the lognormal limit-load parameters
using the k largest observed loads from an effective total of n Monte Carlo
simulaticns. The numerical demonstration of this method uses the 10 largest
values in a sample of 200. Three sets of numerical values were taken from
the total sample of 2000 described in Section 4.2. The coefficients in
Table 4.2-1 are based on plotting positions from Equations (47) and (48)

with a one-sided nonparametric confidence limit of 90 percent. For com~
parison, the coefficients in Table 4.2-2 are based on mean plotting posi-
tions from Equation (46). Table 4.2-3 lists the three sets of numerical

data with the corresponding linear estimates of the mean and standard
deviation of the logarithms from the censored samples. For comparison
purposes, Table 4.2-3 also lists the standard unbiased parametr?c estimate
from the uncensored samples (k = n = 200) and the “true'" parameters estimated
from 2000 values. Figures 4.2-1 through 4.2-3 illustrate the 1imit-load ’
distributions estimated from the censored samples of 10 values compared with

the "true'" distribution based on 2000 values.

Based on these three data sets, the least-squares estimation method is seen
to provide reasonably accurate estimates of the parameteré from a censored
normal sample. As shown in Table 4.2-3, the sampling variance for the
censored sample of size 10 appears to be somewhat ‘larger than for the un-

censored sample of size 200, as expected.

The hypothesis test defined in Section 3.2.1 to determine whether two sets
of data have the same population mean may be applied to the data in Table
4.2-3. For example, the hypothesis that the population means corresponding
to censored data sets A and B are equal is accepted at approximately the 50
percent significance level. The test statistic given by Equation (49) is
about 0.67 and the associated number of degrees of freedom given by Equation
(50) is about 7. In order to reject the null hypothesis at the 90 percent
significance level because My < M the linear estimate of the mean for data

set B would have to be at least 1.06.
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Table L4,2-1: Coefficients for 90% Conservative Linear

Estimates for 10 Largest of 200 Observations

i p.9 Kp bi ;i
1 .589 2.290 -1.3946 0.8404
2 .981 2.075 ~D.7664 0.4871
3 .97h 1.943 -0.3807 0.2703
4 .967 1.838 -0.0733 0.0978
5 .960 1.751 0.180k -0.0452
6 .95h 1.685 0.3732 | -0.1536
7 .948 1.626 0.5456 -0.2506
8 .942 1.572 0.7034 -0.3393
9 .936 1.522 0.8495 -0.4214
10 .931 1.483 0.9635 -0.4855

59



Table 4.2-2: Coefficients for Mean Linear

Estimates for 10 Largest of 200 Observations

p Kp bl ¢,
1 .995 2.5759 -1.38174 0.73565
2 .830 2.3264 -0.74244 0.42397
3 .985 2.1701 -0.354L48 0.22873
L .980 2.0538 -0.06581 0.08345
5 .975 1.9600 0.16702 ~0.03373
6 .870 1.8808 0.36360 -0.13266
7 .965 1.8120 D.53438 ~0.21861
8 .960 1.7507 0.68653 -0.29518
9 .955 1.6954 0.82380 | -0.36427
10 .950 1.6h443 0.94914 -0.42735
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Table 4.2-3:

Linear Parametric

Estimates for 10 Largest of 200 Observations

Set A Set B Set ¢
(znx)] 1.3470 1.3457 1.3814
(2nx)2 1.3401 [.3298 1.2571
(.an)3 1.2947 1.2986 1.24594
(ﬂnx)h 1.2822 1.2887 1.2427
(2nx)5 1.2508 1.2790 1.2318
(2nx)6 1.2430 1.2606 1.2314
(2nx)7 1.2334 1.2589 1.2286
(znx)g 1.1952 1.2265 1.2016
(Rnx)g 1.1816 1.2146 1.1960
(Rnx)]o 1.1892 1.2084 1.1805

my* 1“'rorn-p'9 0.877 0.961] 0.?93

sy* from P.g 0.213 0.17k D.195

m * from p 0.887 0.969 0.902

S¢* From p 0.186 0.152 0.170

my* for k = n = 200 | 0.8765 0.8200 0.888%

§y* for k = n = 200 | 0.1745% 0.1730 0.1630

m for k = n = 2000 | 0.905 0.905 0.905

Sy for k = n = 2000 | 0.1703 0.1703 0.1703
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4.2.2 Examples of Statistical Estimation Method

As described in Section 3.2.2, the statistical estimation method is a
technique for conservatively estimating the Tognormal limit-load parameters
from a small sample of observed loads from a Monte Carlo simulation. The
numerical demonstration of this method is based on the simulated 9na]ysis
of 2000 limit loads described in Section 4.2. Ten data sets of 20 values
each were statistically analyzed to determine the sample mean of the
logarithms (m%) and the standard deviation of the logarithms (si). The
best-fit mean my(s) and standard deviation s_(g) of the logarithms were
then conservatively estimated using the 90% one-sided confidence limit
(Equation 63) for two sets of probability levels. The probability levels
designated confidence fit "a" were biased to positive values:

K, =1,2, 3, & 5. The probability levels designated confidence fit "b"
were unbiased: Ka =-b, -3, -2, -1, 0, 1, 2, 3, 4, 5. The sample data and
the conservative estimates for confidence fits "a' and 'b" are presented in
Tables L.2-4 and 4.2-5, respectively. For comparison purposes, the "true'
sample mean and standard deviation of the logarithms based on 2000 values
are my = 0.905 and sy = 0.1703.

The data presented in Tables 4.2-4 and 4.2-5 are plotted on normal probabii-
ity paper in Figures 4.2-4 through 4.2-13. Each plot shows, for each data
set, the conservatively estimated distributions based on 20 values along
with the ''true' distribution based on 2000 values. Both conservative dis-
tributions result in values larger than the 'true' values for the probabil-
ity range of interest. Values from the biased confidence fit “a" suggest
that most of the conservatism is in the estimate of the standard deviation.
Values from the unbiased confidence fit '"b" show a more balanced approxima-

tion to the "true'" distribution.
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Table h.2-% Parameters for Statistical Estimation

Demonstration Using 90% Confidence Fit 'a'f

Data Set m¥ S$ my(B) Sy (8)
1 _0.886 0.1830 0.915 0.2301

2 0,804 0.1669 | 0.830 0.2099

3 0.893 | 0.2320 | 0.929 | 0.2918
L 0,872 0.1888 0.901 0.2374
5 0.910 0.1819 | 0.938 0.2287
T 6 0.901 0.1459 | 0.924 0.1835
7 0.877 0.1467 | 0.900 0.1845
8 0.930 0.1543 | 0.954 0.1940
9 0.815 0.1684 | 0.84] 0.2118
10 0.859 0.1750 | 0.887 0.2200
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Table 4.2-5 Parameters for Statistical Estimation

Demonstration Using 90% Confidence Fit *'b'

Data Set m$ s; my(ﬁ) $Y (8}
1 0.886 0.1830 ! 1.004 0.1995
2 0.804 0.1669 | ©0.912 0.1820
3 0.893 0.2320 { 1.043 06,2530
4 0.872 { 0.1888 | 0.994 | 0.2058
5 0.910 ; 0.1819 g 1,027 | 0.1983
6 0.901 ; 0.1459 | 0.995 0.1591
7 0.877 0.1467 ; 0.972 | 0.1600
8 0.930 | 0.1543 | 1.030 [ 0.1682
9 0.815 0.1684 , 0.92h | 0.1836

10 0.859 | 0.1750 [ 0.973 § 0.1907
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4.3 Examples of Frequency - Domain Method
Numerically demonstrating the method for determining the limit-load

probability distribution from the power spectral density function (PSD)

of a Gaussian random process has two general aspects. The first is
demonstrating that the extreme values from a continuous Gaussian time
series of specified duration behave mathematically as extremes from a
population of discrete normal variates, The second is demonstrating that
phe lognormal and extremal type [il distributions provide valid repre-
sentations of the actual distribution of extremes when based on the follow-
ing expression for the standardized characteristic largest value derived

in Section 3.3:

AU 1/2
u = —=[2 an(T-E[N,(0)])] (77)
Both of these aspects will be demonstrated using numerical data obtained

from an analog Gaussian noise generator.

The Elgenco Model 311A Gaussian Noise Generator was used to-obtain the
required random time histories. This electronic device provides a stable
and reliable source of Gaussian random noise having the foilowing

characteristics:.

(1} The output PSD is uniform to +0.1 dB from O to 35 Hz; the output
falls off rapidly above 40 Hz.

(2) The amplitude probability density function is Gaussian (normal) to

jess than £1 percent.

The output of the Gaussian noise generator was passed through three first-
order filters, all having cutoff frequencies of 25 Hz. The purpose of
this filtering was to specify accurately the high-frequency roll-off so
that the actual PSD could be precisely defined. The PSD used for the

numerical demonstration is defined as
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azfc6
(f2+fc2)3 for 0 < f < 40 (34)
= 0 : for f > 40
where fc = 25 Hz, and
a” = 2.785 is the magnitude factor determined

empirically from the generated output.

Figure 4.3-1 presents time histories of the unfiltered random noise pro-
duced directly by the Eigenco Noise Generator and of the random noise after

it was passed through three 25 Hz filters.

To determine the actual mean and standard deviation of the generated time
series, a statistical analysis of the filtered output time history was
performed, based on the assumptions of ergodicity and staticnarity. A
twenty-second duration of the output from the noise generator was sampled

at 0.02-second intervals to p}ovide 1000 data points. The mean and standard
deviation of this large sample were then compﬁted with the following

results:

-0.229
6.418

These statistical esstimates were assumed to be the true parameters of the

B
o

n

generated time series for all subsequent studies.

A Chi—square‘goodness-of—fit test (Reference 8, p. 365) was also performed
with the sample of 1000 data points to verify that the generated output

was Gaussian, The Chi-square statistic, based on a division of the data
into 19 cells, was 19. This value corresponds to a Chi-square cumulative
probabiltity of less than 75 percent. Therefore, the random time histories
obtained from the noise generator may be justifiably considered Gaussian

with parametric values as estimated.
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The magnitude factor of 2.785 used in the PSD expression defined by

Equation (94) is consistent with the empirically determined standard
deviation. With this PSD expressdon, the expected rate of zero crossings

per second with positive slope was calculated to be 12.77. This compares
well with the observed average of 13,0 taken from 26 seconds of the generated

random time history.

Because the theory developed in Section 3.3 applies only to Gaussian random
processes having zero mean values, the DC bias of -0.229 was subtracted
from the generated time histories for all subsequent numerical comparisons.
Each desired extreme-value observation was defined as the largest positive
value occurring in a specified time duration, T. The theoretical symmetry
of the Gaussian distribution was used to assure uniformity of the extreme-
value data. Thus, observations of extremes were taken equally from the
positive and negative peaks, and the absolute values of the two data sets
were combined into one total sample. The positive and negative data values’
were selected from different sections of the random time history, except
for the data corresponding to T = 100 seconds. According to Gumbel
(Reference 1, p. 110), the extreme largest and extreme smallest values are
asymptotically independent for large samples. Thus, the combining of
positive and negative extreme values from the same time-history section for

T = 100 seconds is believed to be justified theoretically.

Verifying that observed extreme values from a generated time series behave
mathematically as normal extremes was accomplished by comparing observed
and theoretical cumulative probabilfty distributions. The theoretical
probability distribution, representing the largest individual in samples
of size n taken from a standardized normal population, was tabulated by

K. Pearson in Reference 2, (page 162)., The basic relation between sample
size (n) and characteristic la}gest value (uj for a specified distribution

is given by Gumbel (Reference 1, page 82) by

Flu) = 1 }]? (2)
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The theoretical distribution of standardized normal extremes for 200 dis~
crete samples, which corresponds to a standardized characteristic largest
value of 2.5758, was selected for comparison with an observed extreme-
value distribution obtained from the generated time series. From Equation
(77}, the value of T corresponding to this characteristic largest value is
2.161 seconds for the specified PSD. The observed probability distribution
was obtained from 200 samples of’iargest values occurring In time intervals
of 2.161 seconds from the generated random time history. The 200 values
were modified to elimiqate the DC bias and then ranked in increasing order

using the mean plotting positions defined by Equation {(46).

The comparison between the observed and theoretical distributions is shown
in Figure 4.3-2. The excellent agreement is corroborated by a Chi-square
test of the hypothesis that the observed distribution is identical to the
theoretical distribution of normal extremes. The Chi-square statistic,
based on a division of the data into 20 cells, was 22.8. This value cor-
résponds to a Chi-square cumulative probability of approximately 80

percent. Therefore, the observed extreme values obtained from the generated
random time series may be considered as normal extremes from a discrete
sample of size n, where n is determined from Equation (2} given the char-

acteristic largest value.

Veéifying the accuracy of the lognormal approximation to represent normal
extremes in terms of the standardized characteristic largest value from
Equation (77) was accomplished by comparing the approximating distribution_
with the distribution of observed extremes for three different time intervals,
T. For T = 1.0 second, the standardized characteristic largest value cor-
responding to the specified PSD is 2.2570. This is in the range where the
lognormal distribution provides a very accurate representation of the actual
distribution of normal extremes. The required lognormal parameters were
obtained from Equations {24), (26), and (79) of Section 3.3. The straight
line in Figure 4.3-3 corresponds to Rn(?'o) = 2.733 and 6 = 0.183. The log-
normal approximation is seen to provide a very good representation of the

observed distribution plotted from 500 data points.
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For T = 20 seconds, the standardized characteristic largest value correspond-
ing to the specified PSD is 3.3295. The lognormal parameters are 2n{y‘g) =
3.092 and § = 0.119. The lognormal approximation provides an adequate
representation of the observed distribution plotted from 120 data points

as shown in Figure 4.3-4. For T = 100 seconds, the standardized char-
acteristic largest value determined from Equation {(77) is 3.7821. The log-
normal parameters are &n{y-c) = 3.213 and & = 0.101. The comparison shown
in Figure 4.3-5 for 200 data points is again adequate. The observed dis-
tributions are truncated in Figures 4.3-4 and 4.3-5 due to timitations in
pen travel while the analog data was generated. The observed distributions
would be expected to intersect the predicted straight lines near the 99.9

percentile values as shown in Figure 2.1-1.

The basic methodology is seen to provide accurate values for the character-
istic largest value and median of the desired limit-load distribution from
a Gaussian process. The lognormal approximation is also seen to represent
the theoretical normal extreme distribution with sufficient-accuracy for

engineering applications.
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b4 Examples of Random Combination Method

Approximate methods are described in Section 3.4 for combining the resulis

of time-domain and frequency-domain loads analyses. The methods provide
estimates of the probability distributions for total limit loads of idealized
boost and maneuver toading conditions. Numerical demonstrations of these
methods using typical data values indicate that lognormal distributions with
easily calculated parameters provide adequate representations of the “exact"

distributions determined by numerically evaluating the convolution integrals.

For the boost loading condition, the turbulence load is assumed to comprise
iess than 20 percent of the total load and to have a characteristic largest
value {4) less than unity. For a numerical demonstration using typical
data values cbtained from Reference 25, the extreme transient load (X} and
the instantaneous turbulence load (Z) are distributed as follows:

Zn nor@a] (mZ =0, s, = 5)

X ~ lognormal (mx =30, V, = 0.3)

The mean and coefficient of variation of the total limit load are cobtained
from Equations (81) and {82) as

my = 30

VT = 0.3432

The convolution integral was evaluated numerically by the WATFOR program
listed in Appendix 11. The resulting "exact" cumulative distribution function
(cDF) is plotted in Figure 4.4-1 along with the lognormal approximation with
parameters my and VT. The lognormal approximation is seen to provide an
adequate representation, although it is slightly conservative in the primary
region of interest. At the 99.99 percent probability level, the lognormal
approximation overestimates the ''exact' distribution by 13 percent for this

example.

For the maneuver loading condition, the turbulence load may comprise up to

50 percent of the total load and the 'steady-state' load is assumed to have
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a coefficient of variation less than about ten percent. For a numerical

demonstration using typical data values, the extreme turbulence load (Z)
and the "'steady-state' load (X) are distributed as follows:

Z ~ normal (mZ = 25, s, = 2)

X n lognormal {m

y = 15, V, = 0.2)

The mean and coefficient of variation of the total limit load are

me = Lo

VT = 0.0901

The ''exact" distribution obtained by numerically evaluating the convolution
integral is plotted in Figure 4.4~2 along with the lognormal approximation.
Since the normal and Iégnormal distributions are essentially identical for.
coefficients of variation less than ten percent, the close agreement between
the "exact' CDF and the lognormal approximation is expected. At the 99.99
percent probability-level, the lognormal approximation underestimates the

"exact'' distribution by less than two percent for this example.
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5.0 CONCLUSTONS AND RECOMMENDAT{ONS

Methods for determining limit-load probability distributions from time-
domain and frequency-domain dynamic loads analyses have been described and
numerically demonstrated. The primary contribution is obtaining the extreme-
value probability distributions from the Gaussian PSD of a freguency-domain
analysis. Other significant contributions include methods for optaining
conservative estimates of limit-load probability distributions from 2 small
number of Monte Carlo simulations and for determining probabilistic limit
loads from a combination of time-domain and frequency-domain dynamic loads

analyses.

The primary areas for additional research are in extending the applicability
of probabilistic concepts to strength analysis, structural testing, and other

engineering decisions associated with aerospace structural systems.
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*J0B ID=SEH
C
c w&x  STATISTICAL ESTIMATION METHOD ®%¢&
C
C THIS PRGGRAM COMPUTES THE LEAST-SQUARES ESTIHATES OF THE LOGNORMAL
C MEAN (HXG) AND COEFFICIENT OF VARIATION {VXG) FOR A SPECIFIED HONTE
C CARLD SAMPLE SIZE AND ONE-SIDED NORMAL CONFIDENCE LEVEL.
c

REAL KngGAH,Hx.HXG'HYG:HYN

REAL ATA[3),ATAT(3)+ATF(2),B120);F{20},+FC{20)+KALPH{20},XC{20)}
c ;
€ INPUT NUMBER DF PODINTS FOR USE IN LEAST~SQUARES ANALYSIS (M}e FIRST
€ KALPH VALUE (X1), AND KALPH INCREMENTS (DEL). KALPH DEFIMES THE NORMAL
C PROBABILITY LEVELS TO BE USED IN THE LEAST-SQUARES ANALYSIS.
c -

READ,M,K1,DEL
PRINT,HM,K1,DEL
XM=FLOAT{H)
KALPHILl) = K1 -
CO 10 §=2,H
10 KALPH{I! = KALPH{I-1) + DEL

OMMA OO0 N0

TNPUT THE LOGMNDRMAL MEAN (MX)} AMD COEFFICTIENT DF VARIATION (VX)) FROM
A KONTE CARLC SAHPLE OF SIZE N AND THE STANDARDIZED NORMAL VARIATE
(KGAM) CORRESPUMDING TO THE DESIRED ONE-SIDED CONFIDENMCE LEVEL
PROBAEILITY. INPUT ONE CARD FDR EACH DESIRED CASE AND TERMINATE THE.
RUN WITH A BLANK CARD AT THE END OF THE DATA DECK.
1S READ:MX VX NyKGAHX
TRANSFORM LOGHORMAL PARAMETERS TD MEAN OF LOGS {MYN) AND STANDARD
DEVIATION OF LOGS {SYNJ).
XN = FLOAT(N]}
MYN = ALOG(MX/(SORT{1.0 + VX¥VX1)])
SYN = SQRTIALOG{L.0 + VX*VX))
C = -
C CALCULATE M VALUES OF THE ONE~SIDED CONFIDENCE LIMIT CORRESPONDING
C TO THE GIVEN KALPH'S.
c .
C = (2.0%XN-3.0)/(2.0%%XN=-2.0)
A = C — [KGAN*KGAMI/(2.0%(XN-1.0})

DO 20 I=1,H

B{I) = KALPH{I)*KALPH(I)/!2 0F{XN-1.01)])

KCI1) = (KALPH{I)*SQRY(C) + KGAMXSQRT{B{I}+A/XN}}/A
. F{I} = MYN + KC{I}*SYN
20 CONTIRUE

PERFORM¥ THE LEAST-SOUARES CALCULATION OF NORMAL MEAN (MYG) AND
NORMAL STANDARD DEVIATION {SYG).

OO0

ATA(L)=XH
ATA(2}=0.0
ATA{31=0.0
D0 30 I=1.H

REPRODUOIB]LITY OF TBE
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ATA(2)

ATA(3)
30 CCONTINUE

D = ATA{L1}*ATA[3) ~ ATA(21*%ATA(2)

ATAL2) + KALPH(I}
ATAL3) + KALPHII}*KALPH{I}

0o

ATAI(1) = ATAL31/D
ATATL2) ==ATA(2)/0
ATALI(3) = ATA{LI/D
ATF{l1) = 0.0 :
ATF(2} = 0.0

O 40 [=1,M

ATF(1) = ATF(1) + FLI)

ATF{2)=ATF(2] + F(I)*KALPHI(I)
40  CONTINUE

MYG = ATATULIZATFI1) + ATAI{2)%ATF(2)
SYG = ATAI(2)#ATF{1l) + ATAL(3)=ATF(2)
C
C TRANSFORM BACK TO LOGNDRMAL PARANMETERS.
c
VXG = SQRT(EXP{SYG*SYG)-1.0)
MXG = (SQRT{1l.0+VXG*VXG))Y*H{EXP{MYG} )"
c
€ BACK SUBSTITUTE FOR COMPARISON WITH ACTUAL ONE-SIDED CONFIDENCE LIMITS.
C

DO 50 I=1,M
50 FCL(l} = MYG + KALPHIL)#SYG

€ PRINT DESIRED OUTPUT AND REPEAT CAH;ULATIDNS FOR NEXT CASE.

PRINT sMX VX N KGAM

PRINT MXG,VXG

PRINT sMYNSYN,MYG4SYG
PRINT|‘KALPH(I]'I=1|H)|‘KC'I,1I=1|H)
PRINTS(F{TY,I=1,M),(FC{1),]I=1,M)

60 TO 15
60 STOP
END
*EXECUTE

10y -4.0, 1.0
2-467! -18451 20' 1028
2.2655, .1681, 20, 1.28
2.5085y .2352, 20, 1.28
24335y 41905y 20, 1.28
2.5254y .1834, 20, 1.28
2-48881 .146?1 20] 1-28
2."2951 -1‘!75' 201 1-28
2.5657: .1552¢ 20+ 1la.28
2.291r .1696, 20: 1.28
2+3984,y L1763, 20y 1.28

*EDJ
I*
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*J0B ID=CNLYV
C
t Tk COMDINATION OF NORMAL AND LOGNORMAL VARIABLES ¥E¥
C .
C THIS PROGRAMY CONPUTES THE CDF OF TL = 2 + X WHERE Z IS5 NORHAL
C ®wITH FEAN MZI AND STANCARC CGEVIATION SZ AND X IS LOGNODRMAL WITH MEAN
C PX AND COEFFICIENT OF VARIATION VX.
C
REAL FZ, KX, PT, INTT
REAL A{100), X{100), PDFT(100), TL{LOO}, COFT{20}, TT(20)
c
C INPUT ACRMAL AND LCGNORMAL PARAMETERS. INPUT DNE CARD FOR EACH DESIRED
C CASE AKG TERMINATE THE RUN WITH A BLANK CARD AT THE END OF THE DATA
€ DECK. CALCULATE MEAY OF LOGAQITHMS {G) AMD STAMDARD DEVIATION GF
€ LCSARITHMS (L) FCR THE LCGNORMAL VARIABLE (X) AND CONSTANT (C} TG BE
C USED Ih THE CONVOLUTION INTEGRAL.
C
10 REACZMZ,SZ+MX,VX
D = SLRT{ALOG(L1.0+VXEXZ))
G = ALOGIMX) — 0.5%D=zx2
C = 1.0/16.283185%0%52)
C
¢ CALCULATE THE MTAN {MT) AND STANDARD DEVIATION (ST} OF TL USING
C THE TAYLCR*S SERIES METHOO. NOTE THAT THESE EQUATIONS ARE EXACT SINCE
C YL IS A LINEA® FUNCTION. :
c
M = MZI + MX
5T = SOATI(SI*%2 + (MXFF2)%[V¥X%%2))
c
C CALCULATE THE DESIRED RANGE (R} FOR THE CDF OF TL AND DEFINE THE
€ INTERVALS [HT)} TO BE USEC. HRCTE THAT THE NUMBER OF INTERVALS (KK} -
C PMUST BE BIVISIBLE BY & SINCE A 7~PCINT QUADRATURE FUNCTION (INTT)
C IS USEC FOR INTEGRATING. ’
o
TL = MT — 8.0%5T
T2 = FT + 7.0%57
R =1T1T2-T1
XK = 96
XKX = ELOAT(KK)
HT = R/XKK
C
C FOR EACH OF THE (KK+1) VALUES OF TL, DETERMINE UPPER (X2) AND LOWER (X1}
C LIMITS GF INTEGRATION, CALCULATE THE OESIRED RANGE (RR) FOR EACH
C INTEGRATICN, AND DEFINT THE INTERVALS (HX) TO BE USEDR. NOTE THAT THE
C  NUMBER OF I[NTFRVALS (JJ} MUST BE DIVISIBLE BY 6.
C .
KK = KK + 1
DO 20 K=1,KK
Jb = K - 1
XK = FLOAT{JXK)
TLIK) = T1 + R¥FXK/XKK'
XiL = EXPIG-6.7%D}
XIh = TL{KY — MZ —- 6.T%SZ
X2L = EXP(G + u5.0%#D)
X2N = TLI{R) - MZ + 8.0%35Z
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X1 = X1L

FF{X1.LT.X1IN} X1=X1N

X2 = X2N

IF{X2.6T.X2L) X2=X2L
. IF{X2.LE.X1) GO TO 25

RR = X2 - X1

Jd = 36

YJJ = FLOAT{JJ}

HX = RR/YJJ

L]
EVALLATE THE FUNCTION TD BE INTEGRATED [A) AT THE (JJ+1) EQUALLY-
SPACED POINTS.

Jd o= dd + 1

CO 30 J=1.444

Kd = 3 - 1

Yd = FLBAT{KJ)

X{J) = X1 + RR¥YJ/YJIJ

ALY = (C/7XMJIIFEXP(—C. 5% L{ALOGIX(I1 =G /D=5 2+ {{TL{K}-X{J}—-MZ)

1/521%%2}))
30 CONTINJE

PERFCRYM THE NUMERICAL INTEGRATION OF A USING A 7-POINT QUADRATURE

FORMULA KANQWN AS WEDDLE'S RULE. THE RESULT IS5 THE PDF OF TL EVALUATED

AT THc (KK+1) EQUALLY-SPACEL POINTS.

N = JJ/é
PCETIK) = INTT(N,HX,A}
- 6C 7€ 20
25 PDFT(K}) = 0.0
20 CONTINUE

PERFORYM THE NUMERICAL INTEGRATICN OF PDFT USING WEDDLE'S RULE.

THE RESULT IS THE COF GF TL EVALUATED AT KK/6 EQUALLY-SPACED POINTS.

DO 4C L=7,KK+6

tL = L/6 .

COFT{LLY = INTT{LL+HT,PDFT}

TFILLY = TLILY .
40 CONTINUE

PRINT CESIRED DUTPUT ANC REPEAT CALCULATIDNS FDR NEXT CASE.

PRIKT +BI+SZiMXVXsGyD
PRIANT ¢ MT,5T

KKK = KK/¢

PRINTs {TT{LL), LL=14KKK)
PRINT L (COFT{LL}, LL=1,KKK]
GO 10 10

sTop

EKD

THIS SUBPROGRAM TNTEGRATES A FUNCTION (A) USING WEDDLE'S RULE. THE
RANGE CF A I35 6¥NN¥H. THE NUMBER OF POINTS IN A IS 6*%NN+1.
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REAL FUNCTION INT7{NN,HsA}

REAL A{100} -
SUMY = 0.0
SUNMZ = 0.0
CC 10 T=1,NN *

SUMZ=SUMZ+A 163 T-5)1+A(6%T1~3}+A(6%]~11+A{6%]+]1])

_ 10 SUML=SUML+5.0%lA(6*I-4)+A(6¥1) ) +6. 0% (AL 6%]=2))
INTT= C.3%h3 {SUML+SUM2Y)
RETURN
END
*EXECUTE .
0.Cr 5.0, 30.0, 0
25.04 2.0,. 15.0,
*E0J
I~
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METHODS FOR COMBINING PAYLOAD PARAMETER
VARIATIONS WITH INPUT ENVIRONMENT

Research & Engineering Division % ( )
NAS8-31240

BOEING A EROSPACE COMPANY

PURPOSE:

T0 DESCRIBE AND NUMERICALLY DEMONSTRATE METHODS FOR DETERMINING LIMIT
LOADS COMPATIBLE WITH PROBABILISTIC STRUCTURAL DESIGN CRITERIA.

LIMITATIONS:

EFFECTS OF STRUCTURAL FATIGUE NOT CONSIDERED

RATIONALE FOR SELECTING FAILURE PROBABILITY NOT CONSIDERED
0  THEORY FOR DECISIONS INVOLVING OPERATIONAL CONSTRAINTS NOT

CONSIDERED.

D. H. MERCHANT

BOEING AEROSPACE Ce.
MAY 19, 1976

" THE LFRVEITAEr company

+ SEATTLE, WASHINGTON



DISCUSSION TOPICS

PROBABILISTIC STRUCTURAL DESIGN CRITERIA
LIMIT-LOAD PROBABILITY DISTRIBUTIONS

EXAMPLE METHODS FOR DETERMINING PROBABILISTIC
LIMIT LOADS

- MONTE CARLO SIMULATIONS
- FREQUENCY-DOMAIN SIMULATIONS

CONCLUSIONS AND RECOMMENDATIONS

e SFITLESLSIEF company
SEATTLE, WASHINGTON



DEFINITIONS FOR PROBABILISTIC STRUCTURAL
DESIGN CRITERIA

LIMIT LOAD (L) - A RANDOM VARIABLE DESCRIBING THE LARGEST LOAD
OCCURRING IN A MISSION FOR A GIVEN COMPONENT

DESIGN LIMIT LOAD (LD) ~ A PARTICULAR VALUE OF THE RANDOM LIMIT LOAD
CORRESPONDING TO A SPECIFIED PROBABILITY LEVEL

STRENGTH (S) - A RANDOM VARIABLE DESCRIBING THE RESISTANCE OR
CAPABILITY OF A GIVEN UOMPONENT

ALLOWABLE STRENGTH (SA) - A PARTICULAR VALUE OF THE RANDOM STRENGTH ‘
CORRESPONDING TO A SPECIFIED PROBABILITY LEVEL.'.

PROBABILITY OF FAILURE (PF = P[L > S} -
THE PROBABILITY THAT THE RANDOM LIMIT LOAD EXCEEDS THE RANDOM
STRENGTH FOR A GIVEN COMPONENT

FACTOR OF SAFETY (FS = SA/LD) - A PROCEDURE FOR DEFINING THE REQUIRED
STRENGTH PROBABILITY DISTRIBUTION RELATIVE TO THE KHNOWN LIMIT-LOAD
PROBABILITY DISTRIBUTION SUCH THAT A SPECIFIED PROBABILITY OF
FAILURE IS ACHIEVED

THE FFLTLZ LSS LF company
SEATTLE, WASHINGTON
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" PROBABILITY DENSITY FUNCTIONS

(Pel <(Pehy

LIMIT LOAD PDF . :STRENGTH PDF,

- STRENGTH PDF,

RAMT I MNAD AND QTRENGTR

“Flgure 2.2-1. Graph}‘ca! Reprasentation of Factor of Safety




‘COMPONENT FACTOR-~OF-SAFETY FOR LOGNORMAL LOAD AND STRENGTH
USING ANG-AMIN COEFFICIENT OF UNCERTAINTY

THE BASIC ANG-AMIN PROBABILITY‘STATEMENf IS PF = P [S/L < v]

IF S AND L ARE INDEPENDENT LOGNORMAL RANDOM VARIABLES, THEN Z = LN § - LN L IS
NORMALLY DISTRIBUTED WITH STANDARD DEVIATION EQUAL TO

oy = \/zn [+ v+ vEN

THE CUMULATIVE NORMAL PROBABILITY DISTRIBUTION FOR ZERO MEAN AND UNIT STANDARD DEVIATION
IS DEFINED AS

K 1 .2

p; =3t

P1 =L T e 2 dt
VZr e

THE COMPONENT FACTOR-OF-SAFETY IS DERIVED AS

. S / :
FS = T.ﬁ' = yeexp - [KPF \/gn[(wvf)(]wé)] + KpD \,zn(.HVE) ‘+ KpA zn(l-z-vg):!

WHERE P, IS PROBABILITY OF LOAD NOT EXCEEDING LIMIT LOAD
P IS PROBABILITY OF STRENGTH EXCEEDING ALLOWABLE STRENGTH

THE REQUIRED COMPONENT ALLOWABLE STRENGTH IS THEN

)m Q‘/Ln(HV }

SA = FS. LD @ FS-exp [zn(

tay

THE Eﬂ.&"lﬂb COMPANY

SEATTLE, WASHINGTON
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. Figure 2.2-2, Factor of Safety {FS‘) vs Probability of Failure (PF) Limit-Load Coefficient of Variation Vi, = .3



LIMIT-LOAD PROBABILITY DISTRIBUTIONS

0 DEFINITIONS:

o "LIMIT LOAD" IS A RANDOM VARIABLE DESCRIBING THE LARGEST LOAD OCCURRING IN A MISSION

o THE PROBABILITY THEORY OF EXTREME VALUES IS DIRECTLY APPLICABLE FOR DETERMINING
PROBABILISTIC LIMIT LOADS

0 FOR A MISSION CONSISTING OF n INDEPENDENT OCCURRENCES OF APPLIED LOAD, THE
THEORETICALLY CCRRECT LIMIT-LOAD PROBABILITY DISTRIBUTION IS

o (x) = [F(x)I"

0 CHARACTERIST%C LARGEST VALUE FOR n INDEPENDENT OCCURRENCES
Flu) =1-1

0 EXTREMAL INTENSITY FUNCTION FOR n INDEPENDENT OCCURRENCES
_ Fluy)
®n ~ lFiuS

o  LIMIT-LOAD PROBABILITY DISTRIBUTIONS ‘
‘ o WHEN F{x) IS OF THE EXPONENTIAL TYPE, ¢n(x) IS EXTREMAL TYPE I FOR LARGE n

| @(T)(X) = exp(-e-an(xiun))

{ WHEN THE COEFFICIENT OF VARIATION IS APPROXIMATELY 0.36, THE EXTREMAL TYPE T
DISTRIBUTION IS IDENTICAL TO THE LOGNORMAL DISTRIBUTION

o FOR THE STRUCTURAL DESIGN OF AEROSPACE VEHICLES, THE LOGNORMAL DISTRIBUTION

PROVIDES A GENERALLY ADEQUATE APPROXIMATION TO THE THEORETICALLY CORRECT
LIMIT-LOAD DISTRIBUTION.

THE LPLETLFLRSEF company
SEATTLE, WASHINGTON
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|4 1 + ] | 1 4 ) ] i ¥ 1) [ 1 ¥
ok y = -’%E where X ~ normal {u,0)
] 1 fanyey | 2
o) ¢ e anp. - ] (202
1.6} /21 Sy 8
W)
15p Yy = any
U : A
s F(y) = expl{zn 0.5)(1-F(u )]
A - A
s = 0.00199 - 0.0633 + 0.6634 0. - 0.2608 -2
13 ) ' .
= exp(y+K_ ' THEORETICAL DISTRIBUTION
p p.(y P ¢) : OF STANDARDIZED NORMAL
124 EXTREMES FOR n = 1,000
19k
1ok
LOGNORMAL APPROXIMATION
0.9} ' '
. 0. 1 1 1 } ] 1 ! 1 ], ' { 1 ] b i ) 1
2801 0.1 1 5 10 20 30, 40 50 60 70 80 90 95 . 99 98.9  ©9.99

Figure 2.1-1. Logf;ormal Approximation to Distribution of Normal Extremes (2 = 2.0902)



tLIMIT LOADS FROM MONTE CARLO SIMULATIONS

‘o THE MONTE CARLO METHOD OF STATISTICAL SIMULATION IS A POWERFUL TCOL FOR
RATIONALLY COMBINING PARAMETERS IN DESIGN LOADS ANALYSES

o THE LIMIT-LOAD DISTRIBUTION FOR A COMPONENT MAY BE ESTIMATED FROM THE n
LARGEST LOADS OBTAINED FROM EACH‘DF. n MISSION SIMULATIONS

o TECHNIQUES FOR REDUCING THE COST OF COMPUTER SIMULATIONS ARE REQUIRED
FOR WIDER ACCEPTANCE OF THE METHOD

o THREE SUCH TECHNIQUES ARE APPLICABLE FOR THE DESIGN OF AEROSPACE VEHICLES:

0 STATISTICAL ESTIMATION - CONSERVATIVELY ESTIMATING DESIRED PARAMETERS
BY "STRAIGHTFORWARD" SAMPLING AND ONE-SIDED NORMAL CONFIDENCE LIMITS

0 LEASf—SQUARES,ESTIMATION - CONSERVATIVELY ESTIMATING DESIRED PARAMETERS
BY "RUSSIAN ROULETTE" SAMPLING AND ONE-SIDED NON-PARAMETRIC CONFIDENCE
LIMITS WITH THE CENSORED NORMAL SAMPLE

0 USE OF EXPECTED 'VALUES - SEPARATING COMPUTATIONAL TASKS INTO ANALYTICAL-
AND MONTE CARLO' CALCULATIONS AND COMBINING THE RESULTING DISTRIBUTIONS

THE S ETEETRIER company

VSEATYTLE, WASHINGTON
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LIMIT LOADS FROM FREQUENCY-DOMAIN SIMULATIONS

GIVEN THE LOAD PSD, STANDARD METHODS ARE AVAILABLE FOR DETERMINING THE
DISTRIBUTION OF NOMINAL LOADS, THE DISTRIBUTION OF PEAK LOADS, AND THE
EXPECTED RATE OF EXCEEDANCE OF SPECIFIED THRESHOLD VALUES.

A METHOD WAS DEVELOPED FOR DETERMINING THE DISTRIBUTION OF THE EXTREME
LARGEST VALUE OF A GAUSSIAN PROCESS OCCURRING WITHIN A GIVEN MISSION LENGTH.

o

RICE'S FORMULA OBTAINS THE EXPECTED NUMBER OF THRESHOLD CROSSINGS IN
A GIVEN TIME OR DISTANCE.

THE CHARACTERISTIC LARGEST VALUE (d) IS THE THRESHOLD VALUE WHOSE
EXPECTED NUMBER OF CROSSINGS IS UNITY

G =4 =2 en(TeElN (0D

THE EXACT EXTREME—VALUE DISTRIBUTICN OF THE DESIRED LIMIT LOAD IS

1

8, (X) = [FN(x)J“ WHERE i =

THE LOGNORMAL AND EXTREMAL TYPE III DISTRIBUTIONS MAY BE USED TC
APPROXIMATE THE EXACT DISTRIBUTION OF NORMAL' EXTREMES FOR SMALL

AND MODERATE VALUES OF n.
MAX. LOAD

THE £33 &7 &7 E7 COMPANY
BEATTLE, WASHINGTON
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CONCLUSIONS AND RECOMMENDATIONS

PRIMARY CONTRIBUTIONS:

0 EXTREME-VALUE DISTRIBUTIONS FROM THE PSD OF A GAUSSIAN FREQUENCY-
DOMAIN ANALYSIS

o  CONSERVATIVE ESTIMATES OF LIMIT-LOAD DISTRIBUTIONS FROM A SMALL : -
NUMBER OF MONTE CARLO SIMULATIONS

© o APPROXIMATE LIMIT-LOAD DISTRIBUTIONS FROM A COMBINATION OF TIME-
DOMAIN AND FREQUENCY-DOMAIN ANALYSES

o .RECOMMENDED AREAS FOR FUTURE RESEARCH ARE INVOLVED WITH EXTENDING APPLIC-

ABILITY OF PROBABILISTIC CONCEPTS TO

STRENGTH ANALYSIS INCLUDING FATIGUE AND FRACTURE CONSIDERATIONS
STRUCTURAL TESTING . ' ‘ _
ENGINEERING DECYSIONS ASSQCIATED WITH AEROSPACE STRUCTURAL SYSTEMS

THE & P LEF R EF COMPANY
SEATTLE, WASHINGTON



