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ABSTRACT
 

Methods are presented for calculating design limit loads compatible with
 
probabilistic structural design criteria. 
The approach is based on the
 
concept that the desired "limit 
load," defined as the largest load occurring
 
in a mission, is 
a random variable having a specific probability distribution
 
which may be determined from extreme-value theory. The "design limit load,"
 
defined as a particular value of this random limit load, 
is the value
 
conventionally used in structural design. 
Methods are presented for deter­
mining the limit load probability distributions-from both time-domain and
 
frequency-domain dynamic load 
simulations. Numerical demonstrations of the
 
methods are also presented.
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1.0 INTRODUCTION
 

The purpose of this report is to describe and numerically demonstrate methods
 

for combining payload parameter variations with the input environment in
 

probabilistic structural design loads analyses.- The design loads resulting
 

from these methods are compatible with probabilistic structural ddsign criteria,
 

The approach is based on the concept that the desired "limit load," defined
 

as the largest load occurring in a mission, is a random variable having a
 

specific probability distribution which may be determined from the extreme­

value theory of probability. The "design limit load," defined as a particular
 

value of this random limit load, is the value conventionally used in structural
 

design.
 

The scope of this study was limited in three general areas. First, no attempt
 

was made to include the effects of structural fatigue. The technical theory
 

is concerned only with structural designs corresponding to the single applica­

tion of an extreme load to an undamaged structure. Second, no attempt was
 

made to define rationale for selecting acceptable probabilities of failure
 

to be used in the structural design criteria. Third, the.technical theory
 

is concerned only with the preliminary design/redesign/design verification
 

phases of a project. No attempt was made to address the inverse problem of
 

operational constraints and decisions.
 

A discussion of a proven general probabilistic structural design approach
 

is presented in Section 2.0 along with some basic results of extreme-value
 

theory which are particularly applicable to structural loads. Section 3.0
 

presents methods for determining extreme-value limit-load probability
 

distributions from conventional time-domain and frequency-domain dynamic
 

loads analyses. Numerical demonstrations of each of these methods are
 

presented in Section 4.0. Conclusions from the present research and
 

recommended areas for future research are presented in Section 5.0. A
 

comprehensive list of references and appended listings of two computer pro­

grams complete this report.
 



2.0 THEORETICAL BACKGROUND
 

The concept of a randomly varying limit load described by a theoretically
 

correct probability distribution and the use of a particular value of
 

this random limit load for structural design purposes are of basic import­

ance in probabilistic structural design criteria. Since the limit load
 

is conventionally defined as the largest load occurring in a mission,
 

the probability theory of extreme values is useful in determining the
 

theoretically correct limit-load probability distribution. Section 2.1
 

contains some basic results of extreme-value theory which are particularly
 

applicable to structural loads. Since the determination of probabilistic
 

structural loads is meaningful only within the larger context of structural
 

design, Section 2.2 includes details of the application of probabilistic
 

load quantities in a general structural design approach.
 



2.1 Limit-Load Probability Distributions
 

The limit load for a structural component is conventionally defined as the
 

largest load occurring during a given mission. The probability that the
 

component load x 
is the largest value among n independent observations is
 

defined by
 

0(x) =IF(x)n () 

where Fx) is the underlying cumulative distribution function (CDF) for the
 
load. Thus 0Cnx) 
is, by definition, the cumulative distribution function
 

of the limit load for a mission which has n independent occurrences of applied
 

load. The probability theory of extreme values, as presented by Gumbel
 

(Reference 
 1), is concerned with describing the limit-load distribution
 

function (n ) for various forms of the underlying distribution (F).
 

Two parameters frequently used in extreme-value theory are the characteristic
 

largest value and the extremal intensity function. The characteristic
 

largest value (un) in a sample of n observations is defined by Gumbel
 

(Reference 1, page 82) in terms of the following equation:
 

F(un) = I I1 (2)
n n 

where F(un) is the underlying CDF evaluated at the characteristic largest value.
 

Thus, as indicated by Equation (2), is that value of
un the random variable
 

which will be equalled or exceeded one time in n observations, on the average.
 

The extremal intensity function (an) in a sample of n observations is defined
 

by Gumbel (Reference ., page 84) as follows:
 

f(u )n

(
n I-~u ) 

where f(un) is the underlying probability density function (PDF) and F(un) is
 

the underlying CDF, both evaluated at the characteristic largest value. The
 

inverse of the extremal intensity function, called Mill's ratio, is tabulated
 

by K. Pearson for the normal distribution (Reference 2, page 11).
 



The underlying distribution F(x) 
is said to be of the exponential type 
if
 
f(x) approaches zero for large Jxj 
at least as fast as the exponential

distribution, f(x) = Xe- Xx
 . For any distribution of the exponential 
type,
 
Gumbel (Reference 
 1, page 168) shows that the CDF for large x is approx­
imately equal to
 

F(x) = e n n (4)

n 

An asymptotic distribution of extreme largest values can 
be obtained by
 
substituting Equation (4) into Equation () and taking the, limit as 
n
 
becomes infinite
 

Mx)=im - nxun)n (5) 
nn 
 nI
 

Evaluating this 
limit by means of the logarithmic series results 
in the
 
first asymptotic distribution of extreme largest values, subsequently
 
called the extremal type I d-istribution:
 

4 Cl) = exp e- ncxun (6)
 

The corresponding PDF, which is positively skewed, is given by
 

)x) = an exp [an(x-un) -e- (x-Unn (7) 

The most probable value or mode (m
0 ) of this dist-ribution is equal to the
 
characteristic largest value:
 

mO un 
 (8)
 

The fifty-percentile value or median (me) is given by
 

m =u- £n(-QnO.5) = un + 0.36651292 
e (9)
n 
 a 
 an
 

The mean m) is
 

m = u + CE (10)
 
n 

where CE = 0.57721566 
is Euler's constant.
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The 	standard deviation (s) is given by
 

/Tan 

and 	the coefficient of variation (V = s/m) is 

V= 	 (12) 
/6( 	 nu + CE) 

n n E 

Equations (10) through (12) define parametric values for the extremal type
 

I distribution corresponding to a single mission. Parametric values for
 

the largest load occurring in N missions are as follows:
 

m m +!a nN-s (13)
 

N IT 

5=N s 	 (14) 

(5)

VN V 


-
(0 + !Z inN'V) 

These relations are derived in Reference 3 (page 67). Note-that the
 

standard deviation (s) and the extremal intensi'ty function (an) for the
 

extremal type I distribution are theoretically independent of sample size.
 

According to Gumbel (Reference 1, page 182) the extremal type I dist ibution
 

is often satisfactorily represented by the lognormal distribution. The
 

lognormal distribution wlth coefficient of variation equal to 0.364 is
 

essentially identical to the extremal type I distribution. For coefficients
 

of variation between 0.31 and 0.42, the extremal and lognormal distributions
 

are graphically indistinguishable. An example of the validity of the log­

normal approximation to the extremal type I distribution is given in Reference
 

4. 	For this analysis, 28 sets of internal load quantities were calculated
 

as the maximum values experienced in each of 100 simulated lunar landings.
 

A Chi-square test of the hypothesis that the loads were lognormally dis­

tributed resulted in cumulative probabilities ranging from 5 to 90 percent.
 

The lognormal approximation was therefore considered acceptable since the
 

Chi-square probabilities were less than 90 percent for all 28 internal load
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quantities. The Chi-square hypothesis is usually accepted for cumulative
 

probabilities as high as 99 percent. The coefficients of varlation for
 

these load quantities varied between 0.2 and 0.4.
 

The extremal type I distribution, defined by Equations (6) through (15),
 

is the theoretically proper distribution for limit loads due to any con­

dition having an exponential-type underlying probability distribution and
 

a sufficiently large number of independent load occurrences. For the
 

exponential distribution, convergence to the asymptotic extremal type I
 

distribution is essentially complete for 100 observations (Reference 1,
 

page 116). For the normal distribution, however, convergence to the
 

asymptotic type I distribution is extremely slow. According to Fisher and
 

Tippett (Reference 5, page 189), close convergence is attained only for
 

sample sizes on the order of 1055. Such large samples correspond to
 

characteristic largest values of the standardized normal variate, hereafter
 

designated un, on the order of 16.
 

Accurately describing extreme values from an underlying normal distribution
 

is necessary due to the central role of the normal distribution in engineer­

ing applications. For very large values of un' the theoretical distribution
 

of normal extremes converges to the extremal type I distribution. Let the
 

underlying normal distribution of interest have mean v and standard devia­

tion a so that the normal standardized variate is defined as y = (x-v)/a.
 

The type I distribution function for standardized normal extremes is then
 

n1
4(1)(y) = exp(e- ny -a 


where
 
A. . ..~i -3 + -5 (17)

a =u +u - (17)

n n n n n
 

The expression for the standardized normal extremal intensity function of
 

Equation (17) is derived by Gumbel (Reference 1, page 137).
 

A second representation of the distribution of standardized normal extremes
 

was proposed by Fisher and Tippett (Reference 5 ). The proposed CDF is of the
 

form
 

6 



A2 2 
(Y)= exp'[ n j (18) 

(u +1) 

where k 
n 

(u21) 
n 

This general form is denoted by Gumbel (Reference 1, page 298) as the 

third asymptotic distribution of extreme values or the extremal iype III 
distribution. By inverting Equation (18), approximate percentage points 

for extremes of the standardized normal variate are obtained as follows 

in terms of the cumulative probability, p: 

- zn(-znP) l 
y exp n ] - zn(kznp)J (20) 

A special characteristic of this extremal type III distribution is that it­

converges for increasing values of the parameter k toward the extremal type
 
I distribution. Thus, in practice, the extremal type III distribution may
 
be used to represent the distribution of normal extremes for all values of
 

u greater than 5.
 

The theoretical distribution of extreme largest values from variously sized
 
samples of standardized normal variates was tabulated by K. Pearson in Ref­

erence 2, (page 162). Plots of these tabulated values on lognormal pro­
bability paper suggest that the theoretical distribution of normal extremes
 

may be adequately approximated by the lognormal probability distribution.
 

In fact, the theoretical distribution plots essentially as a straight line
 

on 
lognormal probability paper for standardized characteristic largest
 

values (Un ) of approximately 2.16. This value of un corresponds to a sample
 

size (n) of approximately 65. For other values of Un, the theoretical dis­
tribution of normal extremes may be.approximated by a lognormal distribution
 
which matches the theoretical distribution at the fifty-percentile and 99.9
 

percentile values of the logarithms. Figure 2.1-1 illustrates the approxi­

mation involved for the theoretical distribution having Un equal to 3.0902.
 
This theoretical distribution corresponds to the largest sample size (n=1000)
 

used for the K. Pearson tables.
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The lognormal PDF may be written for the standardized normal extreme
 

variate (y) as
 

f(y) exp - ) 	 (21) 

where 	y is the mean of kny and
 

6 is the standard deviation of Zny.
 

The parameter y may be simply expressed in terms of the median (/) of the 

standardized normal extreme as follows:
 

y Zn 	V (22)
 

The standardized-extreme median (y) for n samples is defined by the following
 

equation:
 

IFLV)Jn = 0.5 	 (23) 

Combining Equations (2) and (2) to eliminate n gives the following desired
 

exact equation for y in terms of u :
 

F(L) = 	 exp[(n 0.5)(i-F(Un))] (24) 

where 	 F is the normal CDF.
 

The slope parameter 6 is defined arbitrarily in terms of the 99.9 percentile
 

value of the logarithm of y as follows:
 

6 = IYn(y. 9 9 9 )-y]/K.999 	 (25) 

where 	 K 999 = 3.0902 is the 99.9 percentile value of the standardized 

normal CDF. 

Values of y, 6, and Zn(y.999 ) versus un are presented in Table 2.1-1. The 

values in this table are based on the K. Pearson tables (Reference 2 , page 

162) for the lower values of un and on the extremal type III approximation 

(Equation 20) for the higher values of un. The accuracy of the values in
 

Table 2.1-1 is believed on the order of +0.001 due primarily to interpolation
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Table 2.1-1: Lognormal Approximation to
 

Standardized Normal Extremes
 

un n Y.999) 6* n(y.999)* 

1.2816 0.406 0.295 1.317 0.2957 1.320 

1.6449 0.602 0.246 1.361 0.2454 1.360 

1.8339 0.693 0.224 1.386 0.2234 1.383 

2.0538 0.790 0.202 1.413 0.2010 1.411 

2.3264 0.901 0.178 1.451 0.1776 1.450 

2.5758 0.993 0.160 1.486 0.1595 1.486 

2.7131 1.042 0.150 1.505 0.1507 1,508 

2.8071 1.073 0.145 1.520 0.1450 1.521 

2.9352 1.114 0.137 1.538 0.1378 1.540 

3.0234 1.142 0.132 1.550 0.1332 1.554 

3.0902 1.162 0.129 1.560 0.1298 1.563 

7.0 1.953 0,0408 2.079 0.0400 2.077 

8.0 2.085 0.0314 2.182 0.0314 2.182 

9.0 2.202 0.0250 2.279 0.0251 2.280 

10.0 2.306 0.0207 2.370 0.0203 2.369 

11.0 2.401 0.0170 2.454 0.0167 2.453 

12.0 2.487 0.0144 2.532 o.o140 2.530 

14.0 2.641 O.0i06 2.674 O.1o06 2.674 

16.0 2.774 0.0082 2.799 0.0090 2.802 
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errors. The logarithm of the median (y) computed from the type III dis­
tribution was found to be within +0.001 
of the "exact" value computed
 

from Equations (22) and 
(24) for all un greater than 7.0. The standard-

Ized characteristic largest values (Un) corresponding to the sample size
 

(n) in Pearson's tables are determined from Equation (2) using linear
 

interpolation of the logarithms of the tabulated normal cumulative pro­

babilities.
 

A functional relationship between 6 and in was es'tablished by a least­
squares analysis of the data in Table 2.1-1. 
 The functional relationship,
 

valid for 3n less than 16, is as follows:
 

6 0.00199 i n - 0.0633 + n0.6634 6un - 0.2648 u-~-2(26) 

The two columns of Table 2.1-1 labeled 6* and Zn(y 999)*-are based on the
 
relationship of Equation (26). These data indicate that the 
 least-squares
 

fit is sufficiently accurate for practical 
purposes. Figure 2.1-2 illustrates
 
the numerical behavior of the slope parameter (6) as a function of un. If de­

sired, values of 6 for un exceeding 16 can be obtained directly from
 

Equations (20) and (25).
 

Percentage points of the lognormal approximation to the distribution of
 
normal extremes are obtained as 
follows in terms of the cumulative probabil­

ity, p:
 

=-11 = exp(y+Kp,'6) (27)
 
a p 

where p and a are the mean and standard deviation of the under­

lying normal distribution,
 

y is defined by Equations (22) and (24),
 

& is defined by Equation (26), and
 

K is the pxlOO percentile value of the standardized
 
P
normal CDF.
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A lognormal approximation for normal extremes is described by Equations (21)
 

through (27). The extreme median "() is determined exactly, while the higher
 

percentile values are approximated adequately by an equivalent slope param­

eter (6). The lower percentile values are approximated less well, as shown
 

in Figure 2.1-1, but these may be of less importance in practical applica­

tions.
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2.2 Probabilistic Structural Design Criteria
 

The extended reliability structural design approach proposed by Ang and
 
Amin (Reference 6 ) recognizes both the probabilistic nature of limit loads
 
and strength and the analytical uncertainties associated with their evalua­
tion. The uncertainties associated with determining limit loads and
 
strengths can be quantified by a factor of uncertainty (v) equal' to or
 
greater than unity. Thus the event 
(S/L > v) constitutes a state of struc­
tural safety, where S and L represent the strength and limit load associated 
with a structural component. The positive and negative values of a load 
(such as tension and compression in a rod) must be considered as two separate 
load quantities in two separate structural components. If S and L are both 
random variables, then the probability PIS/L > v] is a proper measure of struc­
tural safety. The extended reliability structural design approach is then 
expressed by the following probabilistic equation for structural safety: 

P >V] = I - PF (28)
 

where S is the random variable describing the component strength,
 
L is the random variable describing the component limit load,
 

v.Is the Ang-Amin coefficient of uncertainty for the component,
 

and PFis the component probability of failure or acceptable risk.
 

When the limit-load and strength probability density functions are known,
 
the structural design approach may be expressed 
in two equivalent forms:
 

I- P F fL(x) fs(y) dx dy (29)
 

=PF fs(y) " fLX) dy dx (30) 

where fLx) is the limit-load probability density function (PDF), and
 

fs(y) is the strength PDF.
 

The conventional factor of safety is defined as 
the ratio of the allowable
 

strength (SA) to the design 
limit load (LD):
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FS =-L
SA(31)
D
 

where SA is the value of the random strength corresponding to a
 

specified exceedance probability (PA), and
 

LD is the value of the random limit load corresponding to
 

a specified non-exceedance probability (PD).
 

The purpose of the factor of safety in the structural design procedure is
 

to locate the strength PDF relative to the given limit-load PDF so that
 

Equation (29) or (30) results in the required component probability of
 

failure. This concept is illustrated in Figure 2.2-1. For most probability
 

distributions, the integral of Equation (29) or (30) must be evaluated
 

numerically and the required factor of safety determined by trial-and-error
 

procedures. However, for certain specific distributions, closed-form evalua­

tions leading to conven'ient design formulas are possible.
 

A particularly convenient design factor-of-safety equation occurs when both
 

limit loads and strengths are assumed to follow the lognormal probability law.
 

As discussed in Section 2.1, the lognormal distribution often accurately
 

represents the theoretically proper distribution for limit loads. Moreover,
 

for much existing strength data, the lognormal distribution also is a
 

satisfactory representation, due perhaps to the deletion of low-strength
 

values by quality-control procedures.
 

The component factor-of-safety expression for lognormal limit loads and
 

strengths is derived in Reference 3 in the following form:
 

FS = LD [F-I(PF) Znl + VL2 )(I + VS2)] (32) 

+ F _ (PD)Zn(l + VL2) + F-I (PA) mni + VS2 

where v is the Ang-Amin coefficient of uncertainty,
 

PF is the probability of failure or acceptable risk,
 

PD is the non-exceedance probability for design limit load (LD), 

PA is the exceedance probability for allowable strength (SA)
,
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VL and VS are limit-load and strength coefficients of variation,
 

F-I(P) is the inverse of the standardized normal cumulative
 

distribution function given by
 
F (P) I t 2 

P= ­ e 2 dt (33)
 

The numerical behavior of the lognormaI/lognormal factor of safety is shown
 
graphically in Figure 2.2-2. For this plot, the defining probabilities for
 

design limit load and allowable strength are both taken as 99 percent, and
 

the coefficient of uncertainty is taken as unity. The factor of safety is
 

seen to increase monotonically with decreasing probability of failure for
 

given load and strength coefficients of variation.
 

From Equation (32), the component factor of safety corresponding to a
 

specified probability of failure may be computed. The allowable strength
 

is then determined, from Equation (31), as the product of the factor of
 

safety times the design limit load. Additional details regarding the
 

application of this probabilistic design approach are presented in Ref­

erence 3. Procedures for determining the basic limit-load probability
 

distributions from which the specific design limit load is selected are
 

discussed in the following section.
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3.0 METIODOLOGY DEVELOPMENT
 

Structural dynamic analyses resulting in design limi't loads may be performed
 

either in the time domain or in the frequency domain. The Taylor's series
 

method and the Monte Carlo method are two widely used techniques for deter­

mining limit loads from time-domain analyses. The Taylor's series method,
 
described in Section 3.1, is an extension of the parameter variation study
 

often performed to evaluate sensitivity to parametric data unceriinties.
 

The Monte Carlo method, described in Section 3.2, is a simulation of the
 

loading condition using a random combination of vehicle parameters and environ­
ments. For each load quantity of interest, the maximum value occurring in
 

each simulated mission is identified and recorded. 'The maximum load data from
 

a number of simulated missions approximates the desired extreme-value limit­

load distribution. Two methods are described for efficiently determining
 

conservative estimates of limit-load probability distributions from Monte
 

Carlo analyses.
 

In Section 3.3, a new method is presented for determining the extreme-value
 

limit-load distribution from a frequency-domain analysis using power spectral
 

density techniques. This method determines the probability distribution of
 

the extreme largest load value, for a stationary Gaussian random process,
 

occurring within a given mission duration. An approach is described in
 

Section 3.4 for estimating the total limit-load probability distribution by
 

combining the results from time-domain and frequency-domain analyses. Section
 

3.5 describes methods for treating mass and stiffness variations and exper­

imental data uncertainties.
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3.1 Limit Loads from Taylor's Series Analyses
 

A detailed discussion of the use of the Taylor's series method to estimate
 
limit-load probability distributions for aerospace launch vehicles 
is
 
presented by Lovingood (Reference 7). This application involves first
 
analytically simulating the structural loads and responses encountered by a
 
nominal launch vehicle flying through a moderately severe synthetic wind
 

profile. The resulting loads are considered to be the nominal 
or mean
 
values for the limit load probability distribution. The peak or design
 
limit load values, which are defined as the "3-a" values having non-exceedance
 
probabilities of 0.9987, are next obtained by computing the variations in
 
load due to 3-a variations in the significant vehicle parameters, taking
 
the root-sum-square variations of each load quantity, and adding these to
 
the corresponding mean values.
 

This method is useful for efficiently predicting preliminary and interim
 
structural design loads. 
 However it has the disadvantage of, requiring a
 
synthetic wind profile defined such that the mean values of all 
the limit
 
loads of 
interest-are produced by the analytical simulations. Besides the
 
difficulty of defining this proper synthetic environment, the Taylor's
 
series method is based on three fundamental assumptions which may not be
 
valid for particular applications. These assumptions will be discussed in
 
the brief derivation which follows. 
A similar derivation in Reference 7 is
 

somewhat more detailed.
 

The distribution of a nonlinear function of several 
random variables may be
 
obtained by approximating the desired function as a linear function 
in the
 
region of interest. The mean and standard deviation of a linear function
 
of several independent random variables are 
known from elementary probability 
theory (Reference 8, page 48). If X1, X2, ... are, X independent random 
variables having means m, m2, ... , mn and variances slIs2 . n 

respectively, and if a1 , a2, ... , an are constants, then a linear random 
function may be defined as follows: 
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f(XlX2' n 1I+ a2X2 + + anXn 
 (34)
 

The mean of f is
 

mf =a I mI + a2 m2 + - + mnan (35) 

Thus the mean of a linear combination of random variables is equal to the
 

linear combination of the means. This result is valid even if the X's are
 

dependent.
 

The variance of f is
 

2 2 2 22 22
 

Sf = a2 s2 +.a2 + ""
s2 + an sn (36)
 

Thus the variance of a linear combination of independent random variables
 

is equal to the 
sum of the prdducts of variances and squared constants. In
 
addition, if the X's are normally distributed, then f is also normally
 

distributed with mean mf and variance sf 
2
 

A nonlinear function may be expanded in a Taylor's series about any given
 

point as follows (Reference 8, page 62):
 

f(X 1,X2, ".' X) = f(ml ,m2 , ".'' in) 

(X1 m)f +o. 

I m,m 2 , m 

+ (X - mn) - + higher order terms (37)n n m3Mi -. n 

If the higher order terms are negligible, the mean of f is, according
 

to Equation (35), approximately equal to:
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mf % f~m1,m2, , mn) (38)
 

If, in addition, the X's are independent, the variance of f is, according
 
to Equation (36), approximately equal 
to
 

2 m ,m2 , "If,
 

n2{
+ s D mlm 2 ' -'in] 
 (39)
 

Futhermore, if the X's are normally distributed, f is approximately normally
 
distributed. 
 If the X's are normally distributed and if the function is
 
linear so that Equat'ion (37) contains no higher order terms, then the mean
 
and variance are exactly as 
given by Equations (38) and (39) and the
 
theoretical distribution of the function is the normal distribution 
(Refer­
ence 9, page 90).
 

The three assumptions in the use of the Taylor's series method are as
 
follows:
 

(l) that the higher-order terms 
in the Taylor expansion are negligible
 
Compared with the first-order terms,
 

(2) that the X's are independent, and
 
(3) that the X's are normally distributed.
 

The accuracy of design limit loads determined by the Taylor's series method
 
depends in part upon how well 
the particular physical simulation is
 
represented by these three assumptions. 
 In Section 4.1, a discussion of
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the effects of these assumptions is presented along with numerical
 

demonstrations of the method. So long as the potential disadvantages
 

of this method are recognized, it remains an efficient and useful tool
 

for estimating preliminary and interim design limit loads.
 

23
 



3.2 Limit Loads from Monte Carlo Simulations
 

The Monte Carlo method is
a powerful and general tool for predicting struc­
tural design loads. 
 The method has'been gaining wider acceptance-for
 
dynamic load studies of aerospace vehicles (References 4, 10, 11, 12
 
For this application, the method consists essentially of simulating a random
 
loading phenomenon by combining deterministic and probabilistic variables.
 
The limit-load probability distribution for each load quantity is then the
 
distribution of the largest loads occurring 
in each simulated mission. For
 
the launch vehicle load simulations described in Reference 10, the determin­
istic variables included such vehicle parameters as mass and geometry, struc­
tural dynamic characteristics, propellant slosh parameters, and control­
system parameters.- The probabilistic variables for this study were restricted
 
to descriptions of the wind environment. The wind was represented both by
 
detailed measured wind.profiles including turbulence and by filtered measured
 
wind profiles with the turbulence considered separately using power spectral
 

density (PSD) methods.
 

In general, probabilistic variables may include any factors not determin­
istically known, including initial conditions, propulsion characteristics,
 
alignment tolerances, and mass properties. 
 For time-domain simulations,
 
sample values of individual random variables may be generated using digital
 
random number generators such as those described 
in References 13 and 14.
 
Sample time histories of random processes such as wind turbulence can be
 
generated from PSD data using the technique described in Reference 15. Of
 
course, actual 'sample values or sample time histories from test data may be
 
used directly as 
the random inputs to a Monte Carlo time-domain simulation.
 

As shown 
in.Section 3.1, the variance of a function of several random
 
variables increases as the number of variables increases. Similarly, the true
 
function variance (Co
2) of a load quantity determined from a Monte Carlo
 
analysis increases with the number of random variables included 
in the sim­
ulation. 
 Since the results of a Monte Carlo loads analysis are treated
 
statistically as 
measured data, the sampling variances of the parameters of
 
interest decrease with the number of replications. For example, if the true
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function variance of a normally distributed load is known to be a2, the
 
sampling variance of the mean is a2/n .where n is the number of Monte Carlo
 
replications (Reference 8 , 
page 50). The number of replications is thus
 
seen to affect the sampling variance, not the true function variance. Once
 
the probabilistic variables required to represent a physical loading
 
phenomenon are defined, the idealized 
true function variance is fixed.
 

Monte carlo estimates of this and other parameters may then be made as
 
accurate as desired simply by increasing the number of replicati6ns.
 
Statistical techniques, such as those described in this section, provide
 
measures of the accuracy of the estimates in terms of the number of
 

replications.
 

A major consideration in the general application of the Monte Carlo method
 
is to reduce the required cost of simulation as much as possible. 
 In
 
Reference 16 (page 146), H. Kahn describes several 
such techniques. Two
 
of these (Russian Roulette and Use of Expected Values) have been used
 
successfully in structural load analyses. Russian Roulette involves con­
centrating the computational effort on 
cases of special interest. For a
 
landing dynamics analysis, the cases of interest may be those having the
 
largest initial kinetic energy which therefore result in the largest struc­
tural loads. For a flight loads analysis, the cases of interest may be
 
those having the wind profiles resulting in largest loads; the critical
 
profiles are 
identified using very greatly simplified flight simulations.
 
These cases identified as being of special 
interest are then analyzed using
 
the more detailed simulation methods. The Use of Expected Values 
is merely
 
a separation of computationa-I tasks can
into what be efficiently calculated
 
analytically and what must be simulated by Monte Carlo methods. 
An example
 
of this technique is the separation of the wind profile into small-scale
 
turbulence (efficiently treated by PSD methods) and large-scale variations
 

as described in Reference 10.
 

Two different'techniques have been developed for obtaining conservative
 
estimates of the limit-load probability distributions from Monte Carlo analyses.
 
Both techniques are 
based on the generally valid representation of random
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limit loads by the lognormal probability law. The least-squares estimation
 
method may be used to obtain conservative estimates of the mean and standard
 
deviation from a censored sample. The statistical estimation method may be
 
used to obtain conservative estimates of the normal 
mean and standard
 

deviation from a small random sample.
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3.2.1 Least-Squares Estimation Method
 

The Russian Roulette technique applied to a flight loads analysis results
 

In the k largest loads from a total sample of n cases. Two different
 

methods for estimating the mean and standard deviation from such a censored
 

sample of normal variates are described by Gupta in Reference 17. The max­

imum-likelihood method for censored samples results in estimators which are
 

consistent, asymptotically normally distributed, and efficient (Reference 18,
 

page 524). However, when the k observed loads comprise a small percentage
 

of the total sample of n loads, the variances and covariances of the max­

imum-likelihood estimates are quite large. For example, according to data
 

presented by-Gupta (Reference 17, page 263), the variance of the maximum­

likelihood estimate of the mean based on k/n = 0.05 is 2.6 times the cor­

responding variance based on a random sample of size k with a known. An
 

alternate method for estimating normal parameters from a censored sample is
 

designated the least-squares estimation method.
 

The unbiased linear estimates of the normal mean and standard deviation
 

based on a least-squares approach is derived as follows by Gupta (Reference
 

l7, page. 268) for the k largest observations in a total sample of size n:
 

E{Ylk = [B)0) 	 (40) 

where E{ylk 	 is the vector of expected values of the k
 

largest ordered variates, and
 

= 
 1 Kp
1 
I Kp2 

I Kpk 

I Kp i It 

= A27 e 2 dt 
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The desired linear estimates are then obtained by solving Equation (40)
 
for the values of p and a which provide the best fit in the least squares
 

sense:
 

yy B 133 T 
k (41) 

Equation (41) may be written in terms of two coefficient vectors as follows: 

k 
' y i  my* b k 2,3,"',n (42) 

k 
S ciYi k =2,3,"',n (43) 

Since these linear estimates are unbiased, the coefficients satisfy the
 

following conditions:
 

k
 
b. = 1 (44) 

k 
= 
c 0 (45)


i=l
 

The requi-red percentage points of the standardized normal CDF (K ) may be
 
obtained from tables such as those 
in Reference 8 (page 555) and Aeference 19
 

(page 34). The probabilities (pi) corresponding to the k largest ordered
 

variates may be determined either as mean plotting positions or conservative
 
plotting positions based on nonparametric statistics. The mean plotting
 

position recommended by Gumbel (Reference 1, page 34) 
for most standard
 

applications of extreme-value theory is defined by
 

- (n+l-i)
PI ( for i = 1,2, k (46) 

Equation (46) has the advantages of simplicity and consistency between the
 

high and low extreme values. As an example of the consistency of the mean
 
plotting position, the smallest observation of 200 has an assigned probabil­

ity of 0.0050 while the largest has a probability of 0.9950.
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Conservative plotting positions may be established from the standard one­

sided nonparametric confidence limit as derived in Reference 4. The con­

servative estimates of p. corresponding to confidence level B are obtained
 

from the following equation:
 

n-j
n nplpi I 

=
B i-pi . . Iji for i = 1,2, "",k (47) 

j=n+1-i n p 

An approximate expression for the conservative estimates of p. is based on
 

the normal approximation to the binomial probability law:
 

2 (n:K )2 n+l-i) + Ka2KB K 2+4(i-i ) n+l-i )P1 


for = 1,2, k (48)
 

where K is the x 100 percentile value of the standardized normal CDF.
 

The least-squares estimation method for determining the limit-load probability
 

distribution from the k largest of n Monte Carlo observations is described
 

as follows for each load quantity of interest:
 

(1) Order the natural logarithms of the k largest observed loads in
 

decreasing order (i.e., i = 1 for the largest load).
 

(2) Determine plotting positions by one of two alternate methods:
 

(a) For a given confidence level (B), calculate the conservative
 

plotting positions (p.) for each observed load from Equations (47)
 

and (48); or (b) Calculate the mean plotting positions (pi) for each
 

observed load from Equation (46).
 

(3) .Form the [B] matrix defined by Equation (40) by interpolating the
 

pelcentage points of the tabulated normal CDF corresponding to the k
 

plotting positions (pi).
 

(4) Calculate the coefficient vectors by the matrix operations of
 

Equation (41).
 

(5) For each load quantity of interest, use the coefficient vectors
 

and the vector of k ordered loads to calculate the mean and standard
 

deviation of the logarithms according to Equations (42) and (43).
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This least-squares estimation method provides estimates of the lognormal
 

parameters of limit loads determined from the k largest of n Monte Carlo
 

simulations. Any degree of conservatism in the estimated parameters is,
 

of course, dependent on the confidence level (B) chosen. A numerical
 

demonstration of this method is presented in Section 4.2.1.
 

In the design phase of a program, the Russian Roulette technique,may be
 

used to determine a set of limit loads for a specific mission. If certain
 

aspects of the mission change, a second set of limit loads may be determined.
 

To evaluate the beneficial or detrimental effects on loads of the mission
 

changes, an approximate hypothesis test is recommended. This test evaluates
 

the hypothesis that the means of the two normal distributions are equal.
 

The linear estimates for the mean and standard deviation for both sets of
 

loads are determined using the mean plotting positions (Equation 46) and
 

the coefficients defined by Equation (41). Let the first set of limit loads
 

be designated by "a" and the second set by "b". The approximate test of
 

the hypothesis that pa = 1b is described by Bowker and Lieberman (Reference
 

8, 	page 173). The test statistic is given by
 

= a b (4) 
tsa*SAa + sb,2/b]b 

and the associated degrees of freedom are
 

v [a*2/a + sb*2/nb] 2
 

(50)
(Sa	* 2 /na).2+ (sb*2/nb) 2 


("na+ 1) nj-T
 

where m* and s* are given by Equations (42) and (43). The reduced
 

sample size (n) may be approximated by
 

S
n/X 	 (51)
 

where X is given by Table 3.2-1
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Table 3.2-1: Factor for Effective-Sample Size
 

of Censored -Samples
 
Source: A. K. Gupta (Reference 17, 


k/n A
 

0.05 51.58
 

0.10 17.79 

0.15 9.26
 

0.20 5.78 
0.25 4.02 

0.30 3.02
 

0.35 2.40 

O.4O 1.99 
0.45 1.71 

0.50 1.52 

0"55 1.38 

0.6o 1.27 

o.65 1.20
 

0.70 1.17
 

0.75 1.09
 

0.60 1.06 
0.85 1.04
 

0.90 1.02
 

0.95 1.01 

0.97 1.00 

page 263)
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The factor X tabulated in Table 3.2-1 
as a function of the ratio of
 
censored sample size (k)to effective total sample size (n)is taken from
 
Gupta (Reference 17, page 263). 
 This factor represents the sampling
 
variance of the maximum-likelihood estimate of the mean of a censored
 

sample.
 

According to Bowker and 4 ieberman (Reference 8, page 174), the criteria for
 
rejection of the hypothesis that pa = 1b is as follows:
 

t'I Lt/2;v ifwe wish to reject when Pa is not equal Vb
to 


to> t ;V if we wish to reject when Pa > Pb" 

to < -t; v ifwe wish to reject when a p< b" 

Pdrcentage points of the t distribution are tabulated, for example, in
 
Bowker and Lieberman (Reference 8", page 558).
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3.2.2 Statistical Estimation Method
 

Another technique which may be used successfully' for determining probabil­

istic design limit loads is the statistical estimation method. As an ex­

tension of the normal confidence limit concept, this method is based on -the
 

generally valid representation of random limit loads by the lognormal pro­

bability law. The standard expression of the one-sided normal confidence
 

limit as derived in Reference 4 is valid for Monte Carlo samples of 50 or
 

more observations. This expression can be simply modified as follows to
 

be valid for samples as small as 20 observations.
 

Let y, Y2 ' ... , yn be n independent observations of a normal random 

variable with mean m and standard 'deviations . The unbiased estimates of 
y y


the sample mean and variance, which are stochastically independent, are
 

given by
 

n
 
my y(52)
 

S -n 2Yi-my
Z y (53) 

According to Wilks (Reference 20, page 208), the sample mean (m*) is normally
 
y


distributed'with mean (my) and standard deviation (sy/n) and the sample
 

variance is distributed as follows
 

s 2
 

. y 
The Chi-square distribution with k degrees of freedom (X2) is approximately
 

normal for large k (Reference 20, page 189). However, a much more rapidly
 

converging approximation is given by Bowker and Lieberman (Reference 8
 

page 556):
 

2X2k normal (r2k1, 1) (55) 

The close convergence of this approximation for 20 degrees of freedom is
 

shown in Figure 3.2-1. Combining Equations (54) and (55) results in the
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following approximate distribution for the sample standard deviation for n
 

as small as 20:
 

N n- - (56) 

Define the true a x 100 percentile load by 

F = my + Kasa y ay (57)
 

where K
ra 1
 
__ e 2 dt 

The statistical estimate of F is
 

= * + ~s(58) 
y y
 

From Equations (35), (36), and (56), the mean and variance of F are 

E~fj' K-Sy 2 n - 3 (j

E = my 2n2 (5) 

s 2 K2.s 2
 

Var[F= ­ + (6) 

The one-sided confidence limit equation is 

PIFa < = (61) 

Equation (61) implies that 

F - ElF] 

-KI = F (62) 
a at


J
A 

C 

_where 


= t2MKae dta 0 = 2 

Substituting Equations (57), (59), and (60) into Equation (62) and solving
 

for the appropriate root of K yields
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K */++ 'B / 

K= K A (63) 

where A = C-K n2-/2-) 

B = K 2/2(n-i), 

C 
 (2n-3)/(2n-2)
 

Equation (63) may be used with Equation (58) to determine the one-sided
 

confidence limit for any probability level (a) and confidence level (o)
 

so long as the sample size.(n) is at least 20.
 

The statistical estimation mthod for use in estimating the limit load
 

probability distribution from at least 20 unbiased Monte Carlo observa­

tions is described as follows for each load quantity of interest:
 

(1) Calculate the sample mean ahd standard deviation of the natural
 

logarithms of the observed loads using Equations (52) and (53)
 

(2) Calculate the one-sided confidence limits for several different
 

probabili ty levels (a) for a given confidence level (0) using
 

Equations (58) and,(63)
 

F ,B) =m* + K(cl,.) sy*
 

F(a2,o) = m * + K(a2,) - s * 

(3)' Solve for the mean and standard deviation of the logarithms which
 

provide the least-squares fit to the following equations:
 

F(al,) = my (B) + Ks Sy () 

m2,e)my() + K a2 • y(B)
 

(4) Convert my() and sy() to lognormal mean mx( ) and coefficient of 
variation Vx (0)using the following standard expressions 
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VX(a) = [exp (sy(a)2) - n 	 (64) 

mX() = P1 + Vx(a) 21• exp(myC)) 	 (65) 

Equations (64) and (65) are consistent with the following notation:
 

Y = InY
 

where 	X 'v lognormal (m , Vx = sx/m
 

Y t. normal (my, S)
 

This statistical estimation method provides conservative estimates of the
 

lognormal parameters of limit loads determined from at least 20 Monte Carlo­

simulations. The degree of conservatism in the estimated parameters is, of
 

course, dependent on the confidence level (s) chosen. The estimated param­

etric values are also somewhat dependent on the particular probability
 

levels'(i) chosen for the least-squares fit. A numerical demonstration of
 

this method is presented in Section 4.2.2. A computer program for perform­

ing the necessary calculations is listed in Appendix I. The program is
 

written in FORTRAN IV for use with the WATFOR compiler (Reference 21).
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3.3 Limit Loads from Frequency - Domain Simulation 

In the practical solution of random vibration problems, the dynamic char­

acteristics of a structural system are usually assumed to be linear and
 

deterministic, and the excitation is assumed to be random. Furthermore,
 

the random excitation is usually assumed to be stationary,ergodicand Gaussian
 

with zero mean value, since the random process-for the response can then
 

be completely characterized by its power spectral density function (Reference
 

9, page 89). Solutions to two random vibration problems for this special
 

case of stationary Gaussian response are available in the literature (Ref­

erence 22, page 293). The threshold-crossing problem is concerned with the
 

expected rate at which a random process XCt) exceeds a certain value. The
 

peak-distribution problem is concerned both with the probability distribu­

tion of peak magnitudes in X(t) and with the expected rate of occurrence of
 

the peaks. However, neither of these available solutions provides the
 

extreme-value probability distribution required for probabilistic ultimate
 

strength design. The objective of the present study is to determine the
 

probability distribution of the extreme largest value, for a stationary nd ergxic
 

Gaussian random process X(t), occurring within a given mission length. This
 

required limit-load probability distribution will be expressed in terms of
 

the power spectral density function (PSD) of the calculated load.
 

The real autocorrelation function associated with a real-valued stationary
 

random process X(t) may be defined by
 

R t im I x(t)'X(t+t) dt (66) 

Equations relating the autocorrelation function and the power spectral
 

density function (PSD) are known as the Wiener-Khintchine relations (Ref­

erence 23, page 579). For a real-valued random process, such as the random
 

load in a structural member, the defining equations may be written
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as follows:
 

R(T) JG(w) coswr dw (67) 

G R-r) cosWT dr (68) 

where G(w) is the load PSD with frequency &) in radians/second. 

The load PSD may~alternatively be written with frequency in Hz as follows
 

R = rfl cos2 fT df (69) 

r(f) = 4 R(t) cos2rfT dt (70) 

where f = w/2w in Hz.
 

For some applications, the load PSD may be more Conveniently defined in
 

terms of spatial frequency (radians per unit distance) and spatial distance
 
instead of circular frequency (radians per second) and time. Equations (67Y
 

and (68) with appropriate notation changes may be used as the defining
 

Wiener-Khintchine relations for such applications.
 

With no loss of generality, a stationary random process may be assigned a
 

zero mean value. The variance of such a real-valued random process is
 

obtained from Equations (67) and (69) by evaluating the autocorrelation
 

function for zero time lag,
 

R(0) = a2 = G()dw = r(f).df (71) 

0 0 

Equations (66) through (71) form a consistent set of definitions for use in
 

harmonic analysis of stationary random processes. Since many authors use
 

alternate forms of the Wiener-Khintchine relations (Reference 23, page 580),
 

special care is required when applying formulas for random vibration analysis.
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Standard methods are available for computing the PSD of loads in a linear
 

structure due to stationary Gaussian excitation (References 22, 24, 25).
 

The output response PSD for the rth-calculated load quantity is given by
 

the following general equation:
 

Gr(o) = LL(ri*(3j IGf(J)]{LirJm)) (72) 

where {L ir(J3) is the column matrix of complex frequency responses
frthe rth
 

for t r load quantity and for i excitation points,
 

Lri*(jdJ is a row matrix of the complex conjugates of Lir(J.w), 

and
 

1Gf(j)J is the PSD matrix of input power spectral density
 

functions for each of the i excitation points and cross­

power spectral densities between the excitation points.
 

The following development converts the Gaussian load PSD typically defined by
 

Equation (72) into an extreme-value limrt-load probability distribution
 

required for probabilistic structural design.
 

The critical parameter in the three distributions used for describing
 

extreme normal variates is the characteristic largest value u). Its
 

magnitude increases with sample size until, as n becomes very large, it con­

verges to the most probable value (mode) of the asymptotic extremal type I
 

distribution (Reference I-,page 172). However, as described in Section 2.1,
 

the convergence of the normal extremes to the type I distribution is so slow
 

that the lognormal and extremal type III distributions must be used for small
 

and moderately sized samples. The following development is based on expres­

sing the characteristic largest value in terms of Rice's theorem for the
 

expected number of threshold crossings per unit time.
 

According to Rice (Reference 26; page 192), the expected rate of zero 

crossings from below for a stationary Gaussian process with zero mean is 

given by f2 r(f) df 1/2 

E[N~(O rCf) df3=L{ 
0r(f) df 

4o 



With the PSD defined in radians per second 
(or radians per unit distance),
 

Equation (73) becomes
 

I-G() d 1/2
 
EIN+(0)] .. . .
 (74_____ 

With the random structural load PSD defined by Equation (60) the 
integrals
 
of Equations (73) and (74) will converge whenever the input PSD has a finite
 

var iance. 

The equation for the expected number of times per unit time or distance that
 
the Gaussian load passes through the threshold value C) with positive slope
 
is given by Rice (Reference 26, page 193) as follows:
 

_2
EIN+ (E) = EIN (01)exp C-- ) (75) 

+ + -2a2 

where EN+(0)] is defined by Equation (73) or (74) and
 

a2s defined by Equation (59).
 
Equation (75) may also be found in Reference 22(page 297), Reference 25 (page
 
42), and Reference 27 
(page 5.121) among many other sources. It is restricted
 

to stationary Gaussian random processes having zero mean values. 
 Since the
 
Gaussian model is commonly used 
to represent inflight atmospheric turbulence
 

(Reference 27, page 5.116) and transonic buffeting (Reference 24), 
this
 
restriction is not significant to most current engineering applications.
 

The expected number of threshold crossings in a given time or distance
 
interval CT) is obtained simply by modifying Equation (75) as follows:
 

2
E[N+( T = T.E[N+(0)] exp( 2- (76)
2o2
 

where T defines the length of a mission.
 

The Conventional characteristic largest value in a sample of size n, is
 

defined as follows by Gumbel (Reference 1, page 82): "In n observations,
 
the expected number of values equal 
to or larger than U is unity." Thus, for
 
an ergodic process, the characteristic largest value for a mission of length T
 

41
 



is determined from Equation (76) by setting the expected number of threshold
 

crossings to unity. The required characteristic largest value for the stand­

ardized normal variate is then
 

1/2
 
= [2 Zn(T'E[N+(O))J (77)
 

where a is defined by Equation (59) and
 

E[N+(0)] is defined by either of Equations (73) or (74).
 
The-characteristic largest value for a stationary and ergodic Gaussian random
 

process having zero mean is sufficient to completely define the theoretical
 

and approximate probability distributions for normal extremes.
 

The theoretical extreme-value probability distribution for normal extremes
 

is given by
 
n
Dn (x) = [F(x)] C) 

where F(x) is the normal CDF.
 

The exponent is simply determined by inverting Equation-(2) as follows:
 

n = (78) _ 

where F(u) is the normal CDF evaluated at u, and
 

u is defined by Equation (77).
 

The theoretical distribution of Equation (1) is obviously not suitable for
 

most engineering applications. Since, as discussed in Section 2.1, the con­

vergence of normal extremes to the type I asymptotic extreme-value distribu­

tion is extremely slow, either the extremal type III approximation (Equation
 

20) or the lognormal approximation (Equation 27) is required for practical
 

application. For the case of mean zero and standard deviation a for the
 

underlying Gaussian random process, the percentage points of the lognormal
 

approximation are obtained as follows:
 

kn x = in(-ba) + K "6 (79) 

where 6 = 0.00199 u -0.0633 + 0.6634 -0.2648-2 (26) 

and y is determined from
 

F(Y) = exp[(n 0.5) (l-F(u))) (24) 
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This lognormal approximation will be used in the numerical demonstrations
 

of Section 4.3.
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3.4 Limit Loads from Combination of Time-Domain and Frequency-


Domain Analyses
 

Combining loads from time-domain and frequency-domain analyses of aerospace
 

vehicles is appropriate when, for example, the effects of small-scale wind
 

turbulence are considered separately by power spectral density (PSD) methods.
 

As described in Section 3.2 and Reference 10,-treating the large-scale and
 

small-scale wind variations by separate techniques can significantly improve
 

the efficiency of the total loads analysis. With this approach, boost loads
 

due to large-scale wind variations may be calculated with Monte Carlo
 

techniques using filtered measured wind profiles. Similarly, nominal
 

maneuver loads exclusive of wind turbulence effects may be calculated
 

using static aeroelastic analyses; statistical variations may be included
 

by the Taylor's series method described in Section 3.1. Total limit loads
 

may then be defined as the stochastic combination of such time-domain loads
 

(from either Monte Carlo or Taylor's series analyses) with turbulence loads
 

from separate PSD analyses.
 

Rigorously determining the extreme-value distribution for the general case
 

of two stochastic processes in combination is beyond the scope of this effort.
 

However, a practical approach is developed for approximate solutions to
 

idealized boost and maneuver loading conditions. For the boost condition,
 

the extreme total load is assumed to occur simultaneously with the peak
 

load from the time-domain analysis; the magnitude of this extreme load is
 

then assumed to be modified slightly by the contribution from the frequency­

domain analysis. For the maneuver condition, the extreme total load is
 

assumed to occur simultaneously with the peak load from the frequency-domain
 

analysis, since the contribution from the time-domain analysis is assumed
 

essentially constant. These assumptions are discussed in more detail in the
 

following descriptions.of the approach.
 

The boost load condition is characterized by short-duration transient loads
 

which are large relative to random turbulence loads. According to Reference
 

25, (page 23), peak loads on typical aerospace launch vehicles due to wind
 

shear act for less than one second and may be several times as great as the
 

accompanying turbulence loads. A method for determining total limit loads
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for the boost condition is to combine the extreme load from the time-domain
 

analysis with the instantaneous random turbulence load. The extreme
 

transient load (X) is adequately represented by the lognormal probability
 

law and the instantaneous turbulence load (Z) is normally distributed
 

with zero mean. The desired.total load is then the stochastic sum of Z
 

and X.
 

This approach is sufficiently accurate for turbulence loads less than about
 

20 percent of the total load and for transient loads acting for a relatively
 

short time duration. If the time duration (T) over which the peak transient
 

load is considered constant corresponds to a standardized characteristic
 

largest value (Equation 77) much less than unity, then the extreme-value
 

distribution derived in Section 3.3 is adequately represented by the normal
 

distribution of the instantaneous turbulence load. The error involved in
 

approximating the proper extreme-value distribution by the instantaneous
 

turbulence load distribution for u= is approximately 15 percent at the
 

99.9 percentile level (Reference 1, page 129). So long as the turbulence
 

load itself is a relatively insignificant percentage of the total load,
 

this error may be neglected and the approach considered sufficiently
 

accurate for engineering purposes.
 

The maneuver load condition is characterized by aeroelastic loads which are
 

essentially constant over a time duration (T) and which are not significantly
 

larger than the random turbulence loads. A method for determining total
 

limit loads for the maneuver condition is to combine the extreme load from
 

the frequency-domain analysis with the "steady-state" load from a time­

domain analysis. The extreme turbulence load (X) occurring in the specified
 

time duration (T) is adequately represented by the lognormal probability law
 

as indicated in Section 3.3. The "steady-state" load (z)may be assumed to
 
follow the normal distribution with small variance. The desired total load
 

is again the stochastic sum of a lognormal and a normal variate.
 

This approach is sufficiently accurate for "steady-state" maneuver loads
 

which have relatively small variance and which act for a relatively long
 

duration compared to the effective frequency of the random turbulence loads.
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If the 	"steady-state" loads have a coefficient of variation less than about
 
ten percent, then these loads may be considered essentially constant and
 
the normal distribution assumption with the Taylor's series method 
is an
 
acceptable approximation regardless of the actual distribution.
 

The distribution for the total 
limit load defined for the boost and maneuver
 
conditions may be determined by numerical integration of the standard con­
volution integral. 
 The total limit load is'herein defined as 
the sum of
 
two independent variables
 

TL =Z 	+ X (80)
 

where 	Z n normal (mz, sZ)
 

X lognormal (mX, VX).
 

As described in Section 3.1, 
the mean of the sum of two random variables is
 
the sum of the means. And the variance of the sum of two 
independent
 
random variables is the sum of the variances. Thus, from Equation (80),
 
the exact equations for the parameters of the total limit load 
are
 

m
mT =m + 	 (81)
 

sT sZ=z X2 X2
+ M " 
 (82)
 

The convolution integral resulting in the probability density function (PDF)
 
of TL is given as follows by Parzen (Reference 28, page 317):
 

fTL(t) 	= dxf x)fX(t-x) (83)
 

with X and Z defined as in Equation (80), the convolution integral becomes 

fTL(t) = ( 6-L-exp f 2 (tm/ j 	 (84) 

where 	y and 6 are, respectively, the mean and standard deviation 

of P n X 
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The PDF of the total limit load at any specified value of t is obtainud by
 

integrating Equation (84). The cumulative distribution function (CDF) is
 
obtained, of course, by integrating the resulting PDF. A computer program
 

for performing the necessary calculations is l4sted in Appendix I. The
 

program is written in FORTRAN IV for use with the WATFOR compiler (Reference
 

21).
 

Numerical examples consistent with the limitations used to define the
 

idealized boost and maneuver loading conditions are presented in Section
 

4.4. These results indicate that the perturbation of the predominant
 

lognormal distribution by the normal distribution is relatively insignif­

icant for the numerical limitations assumed. Therefore, for these specific
 

loading conditions, the distribution of the total load is adequately
 

represented by the lognormal probability law with parameters given by
 

Equations (81) and (82).
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3.5 ADDITIONAL TOPICS
 

3.5.1 Payload Mass and Stiffness Variations
 

In most Monte Carlo dynamic load analyses, such as those described in Ref­

erences 4, 10, II, and 12, structural dynamic characteristics are assumed
 

to be deterministic rather than random. This is partly because the effects
 

of variations in mass or stiffness properties may often be considered neg­

ligible relative to the effects of other variables in the simulation. If
 

the mass and/or stiffness variations are considered significant, the random­

ness of these structural dynamic characteristics may be included most
 

simply by using the Taylor's series method in conjunction with the Monte
 

Carlo simulation. With this approach, the limit-load probability distribu­

tions are calculated by a Monte Carlo analysis using nominal fixed values
 

for the structural dynamic characteristics. Then the approximate effects
 

on the limit-load variances may be estimated by the Taylor's series method
 

using "one-sigma" values for the various structural dynamic characteristics
 

in a few typical loads cases of the Monte Carlo analysis. The additional
 

contributions due to payload mass and stiffness variations may then be
 

included in the limit-load probability distributions by Equations (81) and
 

(82) of Section 3.4.
 

Values for the uncertainties in the mass and stiffness parameters of a finite­

element model may be determined as described in Reference 29. This procedure
 

attempts to account for both experimental and modeling uncertainty by adjust­

ing the structural model to fit measured modal data using a minimum-variance
 

criterion.
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3.5.2 Experimental Data Uncertainties
 

Two statistical models are presented for interpreting uncertainties in
 

experimental data. Both models, described in more detail in Reference 29,
 

result in least-squares estimates of a parameter vector {X} which are
 

linearly related to a vector of observations {yi as follows:
 

{Yi = ITJ{X1 + {ci 
 (85)
 

where {c is a vector of measurement errors.
 

The primary result is the best linear unbiased estimate of {X}, designated
 

fX*}, defined in terms of the estimation matrix 1W] and the vector of
 
observations {Y) as follows:
 

{X*} = IW]{YI (86) 

The secondary result is the covariance matrix for this estimate defined by'
 

1cX *1 = Ef{X* - X}{X* - X}T (87)
 

The diagonal terms in the covariance matrix are, of course, the variances
 

of the individual parameter estima.tes.
 

The first statistical model is based on the limiting assumption that the true
 

parameter vector X} is deterministic and the vector of observations {Y} is
 

random only because of the measurement errors {cE. For this case, the
 

estimation matrix [Wl] is as follows:
 

[W] ([T]TtC) -l [T]) - [ T ] T [C C]-I (88) 

where [C ) is the covariance matrix of the measurement errors.
 
The corresponding covariance matrix for the estimate of the parameter vector
 

is 

[Cxx*) = [W 1 [CCE ]w1 I]T (89) 

The results for-this model are derived in Reference 29 using both least­

squares and minimum-variance techniques. The least-squares weighting matrix­
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is the inverse of the covariance matrix of the measurement errors. This
 

approach therefore assigns more weight to those measurements having small
 

measurement errors and less weight to those measurements having large measure­

ment errors. In addition, according to the minimum-variance criterion, the
 

estimation matrix defined by Equation (88) also min.imizes the covariance
 

matrix of {X*i defined by Equation (89).
 

The second statistical model recognizes randomness in the true parameter
 

vector {Xi as well as in the measurement errors {6}. For this case the
 

estimation matrix [W2 is as follows
 

1W2] = £Cyx]TICyy -1 (90)
 

where 

[Cyx = [TJICxxJ (91) 

cyy[ = [TJCXXJ pT]T + IC (92) 

Here the matrix [CXX is the estimate of the covariances of the true param­

eter vector {X} made prior to the availability of test data. The correspond­

ing covariance matrix for the estimate of the parameter vector is
 

ICxx*) = Cxx] - [Cyx]TiCyy]-lfCyx] (93)"
 

The results of this model are derived in Reference 29 using minimum-variance
 

techniques. Thus the estimation matrix defined by Equation (90) minimizes
 

the covariance matrix of {X*} defined by Equation (93). Since the estimation
 

matrix is inversely proportional to the covariance matrices of both the prior
 

estimates and the measurement errors, this approach also assigns most weight
 

to the most accurate estimates and measurements. This method accepts test
 
data to update the prior estimate of a theoretical representation which in­

cludes the analyst's confidence in the representation. The method may be
 

applied sequentially if several sets of test data are available.
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4.0 NUMERICAL DEMONSTRATION
 

The methods previously described for determining limit-load probability
 

distributions from time-domain and frequency-domain analyses have certain
 

limitations which may be best illustrated by numerical examples. Section
 

4.1 presents three numerical examples of the Taylor's series method which
 
demonstrate the effects of the method's fundamental assumptions. Section
 
4.2 demonstrates the least-squares estimation method and the statistical
 

estimation method which may be used to reduce the required number of Monte
 

Carlo simulations. These numerical examples are based on sets of random
 

numbers generated by a digital computer. The method for determining limit
 

loads from a frequency-domain analysis is demonstrated us.ing numerical
 
data obtained from an analog Gaussian noise generator. Secti6n 4.3 presents
 

the results of several examples of this method. Two typical examples of the
 

random combination method are presented in Section 4.4.
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4.1 Examples of Taylor's Series Method
 

As discussed in Section 3.1, 
the Taylor's series method for estimating the
 
probability distribution of a nonlinear function of several random variables
 

is based on the following three assumptions:
 

(1) 	that the higher-order terms in the Taylor expansion of the function
 

are negligible compared with the first order terms,
 
(2) 	that the individual random variables are mutually independent, and
 

(3) 	that the 
individual random variables are each normally distributed.
 

The following is a brief discussion of the implications of these assumptions
 

with numerical examples.
 

Consider a function of four random variables
 

f(W,X,Y,Z) = W2.X/Y + Z 

where W ,,normal (mw 20, sw 2)"
 

X U -- (mx 2, sx =D57735) 

Y u normal (m = 2, sy 0.2)
 

Z u normal (m7 = 0, s =501 

By the Taylor's series method, the estimates of the mean, variance, and
 
standard deviation of the function are as follows:
 

2 . m/m + m = 400
 
mf x y z
 

sf 2 	 1\m m\x ) 2 22 +Vs+mW22 2 mw2 m )2.s2 2 

= 23,'833 

s 	 154.4f lu 52' 



The stochastic behavior of this function was 
studied for three different
 

cases. Case I involved dependent variables 
(pwY = -0.5) and a non-normal 

variable with the variable X being uniformly distributed in the range 1 

to 3. Case 2 involved a non-normal variable (X u U (1,3)) but all variables 

were independent. Case 3 involved all normal and independent variables. 

The mean and standard deviation and the cumulative distribution function
 

(CDF) were determined from a Monte Carlo simulation using a sample size of
 

2000 for each of the three cases. The Monte Carlo simu.lations were performed
 

with the Boeing Generalized Statistics Program (GESP) described in References
 

13 and 14. The resulting means and standard deviations are presented in
 

Table 4.1-I 
for comparison with the Taylor's series estimates. Results of
 

significance tests of the hypothesis that the Monte Carlo parameters are
 

identical to the Taylor's series parameters are also presented in Table
 

4.1-1 along with the results of a Chi-square test for normality (Reference
 

8, page 366). The hypothesis test for the mean was performed using Student's
 

t statistic (Reference 8, page 127). The hypothesis test for the standard
 
deviation was performed using the Chi-square statistic (Reference 8, page 138).
 

The acceptance probabilities for such hypothesis tests are usually established
 

at either one percent or five percent levels. Values of the 37-degree-of­

freedom Chi-square statistic corresponding to these probability levels are
 

59 and 52, respectively.
 

For this particular function, the Monte Carlo means and standard deviations
 

are seen to approach the Taylor's series parameters as the assumptions of
 

independence and normality-of the individual variables are better satisfied.
 

The hypothesis tests indicate that the mean determined by the Taylor's series
 

method is sufficiently accurate regardless of normality and independence of
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Table 4.l-1 Numerical Evaluation of Taylor's Series Method 

Method mf sf P[Ym > mf] P[Ys > sf] x237 

Taylor's series 400.0 154.4 -

Monte Carlo 

Case I 40%.4 172.3 0.008 0 200.1 

Monte Carlo 

Case 2 405.9 159.0 0.049 0.028 133.3 

Monte Carlo 

Case 3 402.8 156.8 0.210 0.164 127.6 
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the individual random variables; the standard deviation determined by the
 

Taylor's series method is sufficiently accurate only when the individual
 

random variables are independent. However, for none of the three cases
 

was the hypothesis of normality verified by the Chi-square test. In Figure
 

4.1-I, the cumulative distribution function determined from the Monte Carlo
 

simulation for Case 3 is plotted versus the Taylor's series normal distribution
 

to illustrate the results of the Chi-square test.
 

These numerical examples are consistent with the theory discussed in
 

Section 3.1. An accurate estimate of the mean requires only that the
 

higher-order terms in the Taylor's series expansion are negligible, whereas
 

an accurate estimate of the variance requires the additional assumption of
 

independence among the individual random variables. All three assumptions
 

must be satisfied in order that the function be approximately normally
 

dist'ributed. For the function studied, the second and higher partial
 

- derivatives are negligible or zero except with respect to the Y variable. 

The numerical influence of the neglected non-zero terms on the Taylor's 

series estimate of the mean and standard deviation appears to be small. 
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4.2 Examples of Monte Carlo Method
 

The following sections consist of numerical demonstrations of the least­

squares estimation method and the statistical estimation method. Both
 

numerical demonstrations are based on a simulated analysis in which the
 

limit load is defined as the largest load occurring in 100 independent
 

observations of a standardized normal variate. By means of the GESP
 

random number generator (References 13 and 14), 2000 simulated li'hit
 

loads were generated. The limit-load distribution was approximately log­

normal (P1xY7 > 49J = 0.095) with mean equal to 2.509 and coefficient of
 

variation equal to 0.1715.
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4.2.1 Examples of Least-Squares Estimation Method
 

As described in Section 3.2.1, the least-squares estimation method is a
 

technique for conservatively estimating the lognormal limit-load parameters
 

using the k largest observed loads from an effective total of n Monte Carlo
 

simulations. The numerical demonstrhtion of this method uses the 10 largest
 

values in a sample of 200. Three sets of numerical values were taken from
 

the total sample of 2000 described in Section 4.2. The coefficients in
 

Table 4.2-1 are based on plotting positions from Equations (47) and (48)
 

with a one-sided nonparametric confidence limit of 90 percent. For com­

parison, the coefficients in Table 4.2-2 are based on mean plotting posi­

tions from kquation (46). Table 4.2-3 lists the three sets of numerical
 

data with the corresponding linear estimates of the mean and standard
 

deviation of the logarithms from the censored samples. For comparison
 

purposes, Table 4.2-3 also lists the standard unbiased parametric estimate
 

from the uncensored samples (k = n = 200) and the "true" parameters estimated
 

frbm 2000 values. Figures 4.21 through 4.2-3 illustrate the limit-load
 

distributions estimated from the censored samples of 10 values compared with
 

the "true" distribution based on 2000 values.
 

Based on these three data sets, the least-squares estimation method is seen
 

to provide reasonably accurate estimates of the parameters from a censored
 

normal sample. As shown in Table 4.2-3, the sampling variance for the
 

censored sample of size 10 apoears to be somewhat larger than for the un­

censored sample of'size 200, as expected.
 

The hypothesis test defined in Section 3.2.1 to determine whether two sets
 

of data have the same population mean may be applied to the data in Table
 

4.2-3. For example, the hypothesis that the population means corresponding
 

to censored data sets A and B are equal is accepted at approximately the 50
 

percent significance level. The test statistic given by Equation (49) is
 

about 0.67 and the associated number of degrees of freedom given by Equation
 

(50) is about 7. In order to reject the null hypothesis at the 90 percent
 

significance level because pa < Pb' the linear estimate of the mean for data 

setB would have to be at least 1.06. 
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Table 4.2-1: Coefficients for 90% Conservative Linear
 

Estimates for 10 Largest of 200 Observations
 

i p 
.9p 

K b. 
I 

c. 
I 

1 .989 2.290 -1.3946 0.8404 

2 .981 2.075 -0.7664 0.4871 

3 .974 1.943 -0.3807 0.2703 

4 .967 1.838 -0.0739 0.0978 

5 .96o 1.751 0.1804 -0.0452 

6 .954 1.685 0.3732 -0.1536 

7 .948 1.626 0.5456 -0.2506 

8 .942 1.572 0.7034 -0.3393 

9 .936 1.522 o.8495 -0.4214 

10 .931 1.483 0.9635 -o.4855 
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Table 4.2-2; Coefficients for Mean Linear
 

Estimates for 10 Largest of 200 Observations
 

i p 

1 .995 

2 .990 

3 .985 

4 .980 

5 .975 

6 .970 

7 .965 

8 .960 

•95 

10 .950 

K
p 

2.5759 


2.3264 


2.1701 


2.0538 


1.9600 


1.8808 


1.8120 


1.7507 


1.6954 


1.6449 


b.I c. I 

-1.36174 0.73565 

-0.74244 0.42397 

-0.35448 0.22873 

-0.06581 0.08345 

0.16702 -0.03373 

0.36360 -0.13266 

0.53438 -0.21861 

0.68653 -0.2518 

0.82380 -0.36427 

0.94914 -0.42735 
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Table 4.2-3: Linear Parametric
 

Estimates for 10 Largest of 200 Observations
 

(znx)1 


(Znx)2 


(mnx) 3 


(Znx)4 


(nx) 5 


(nx) 6 


(knx)7 


(znx)8 


(Znx)9 


(znx) 10 


m * from .p 

s * from p 9 


my* from p 


y from p 


my* for k = n = 200 

sy * for k n = 200 

my for k = n = 2000 


s for k = n = 2000 


Set A 


1.3419 


1.3401 


1.2947 


1.2822 


1.2508 


1.2490 


1.2334 


1.1952 


1.1916 


1.1892 


0.877 


0.213 


0.887 


0.186 


0.8765 


0.1745 


0.905 


0.1703 


Set B Set C
 

1.3457 1.3814
 

1.3298 1.2571
 

1.2986 1.2494
 

1.2887 1.2427
 

1.2790 1.2318
 

1.2606 1.2314
 

1.2589 1.2286
 

1.2265 1.2016
 

1.2146 1.1960
 

1.2084 1.1805
 

.0.961 0.893
 

0.174 0.195
 

0.969 0.902
 

0.152 '0.170
 

0.9200 0.8889
 

0.1730 0.1630
 

0.905 0.905
 

L 
 0.1703 0.1703
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4.2.2 Examples of Statistical Estimation Method
 

As described in Section 3.2.2, the statistical estimation method is a
 

technique for conservatively estimating the lognormal limit-load parameters
 
from a small sample of observed loads from a Monte Carlo simulation. The
 

numerical demonstration of this method is based on 
the simulated analysts
 

of 2000 limit loads described in Section 4.2. Ten data 
sets of 20 values
 

each were statistically analyzed to determine the sample mean of the
 

logarithms Cm*) and 
the standard deviation of the logarithms (S). The
 
y -y
best-fit mean m 
Y
(a) and standard deviation s () of the logarithms were
 

Y
 
then conservatively estimated using the 90% one-sided confidence limit
 

(Equation 63) for two sets of probability levels. The probability levels
 

designated confidence fit "a" were biased 
to positive values: 

K = 1, 2, 3, 4, 5. The probability levels designated confidence fit "b" 

were unbiased: K = -4, -3, -2, -1, 0, 1, 2, 3, 4, 5. The sample data and
 
the conservative estimates for confidence fits "a" and "b" are presented in
 

Tables 4.2-4 and 4.2-5, respectively. For comparison purposes, the "true"
 

sample mean and standard deviation of the logarithms based on 2000 values
 

are m = 0.905 and s = 0.1703. 
y Y 

The data presented in Tables 4.2-4 and 4.2-5 are plotted on normal probabil­

ity paper in Figures 4.2-4 through 4.2-13. 
 Each plot shows, for each data
 

set, the conservatively estimated distributions based on 
20 values along
 

with the "true" distribution based 
on 2000 values. Both conservative dis­

tributions result in values 
larger than the "true" values for the probabil­

ity range of interest. Values from the biased confidence fit "a" suggest
 

that most of the conservatism 
is in the es'timate of the standard deviation.
 

Values from the unbiased confidence fit "b" show a more balanced approxima­

tion to the "true" distribution.
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Table 4.2-4 Parameters for Statistical Estimation
 

Demonstration Using 90% Confidence Fit "a"
 

Data Set m*s* S() I s (6) 

1 0.886 0.1830 0.915 0.2301
 

2 0.804 0.1669 0.830 0.2099
 

3 0.893 0.2320 0.929 0.2918
 

4 0.872 O.1888 0.901 0.2374
 

5 0.910 0.1819 0.93i 0.2287
 

6 0.901 0.1459 0.924 0.1835 

7 0.877 0.1467 0.900 0.1845
 

8 0.930 0.1543 0.954 O.1940
 

9 0.815 .1684 o.841 0.2118
 

10 0.859 0.1750 0.887 0.2200
 

66
 



Table 4.2-5 Parameters for Statistical Estimation
 

Demonstration Using 90% Confidence Fit "b"
 

Data Set m* s in(0) s (0) 

0.886 0.1830 1.004I 0.1995 

2 0.804 0.1669 0.912 I 0.1820 

3 0.83{0.2320 1.043 j 0.2530 

4 0.872 i 0.1888 1 0.994 1 0.2058 

5 0.910 0.1819 1.027 1 0.1983 

6 0.901 0.1459 0.995 0.1591 

7 0.877 0.1467 0.972 0.1600 

8 0.930 0.1543 1.030 oo.1682 

9 0.815 0.1684 1 0.924 0,1836 

10- 6.859 0.1750 1 0 j9730.1907 
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4.3 Examples of Frequency - Domain Method
 

Numerically demonstrating the method for determining the limit-load
 

probability distribution from the power spectral density function (PSD)
 

of a Gaussian random process has two general aspects. The first is
 

demonstrating that the extreme values from a continuous Gaussian time
 

series of specified duration behave mathematically as extremes from a
 

population of discrete normal variates. The second is demonstrating that
 

the lognormal and extremal type III distributions provide valtd repre­

sentations of the actual distribution of extremes when based on the follow­

ing expression for the standardized characteristic largest value derived
 

in Section 3.3:
 

u == [2 £n(T.E[N+(O)])] 1 2 

Both of these aspects will be demonstrated using numerical data obtained
 

from an analog Gaussian noise generator.
 

The Elgenco Model 311A Gaussian Noise Generator was used to-obtain the
 

required random time histories. This electronic device provides a stable
 

and reliable source of Gaussian random noise having the following
 

characteristics:.
 

(1) The output PSD is uniform to +0.1 dB from 0 to 35 Hz; the output
 

falls off rapidly above 40 Hz.
 

(2) The amplitude probability density function is Gaussian (normal) to
 

less than ±1 percent.
 

The output of the Gaussian noise generator was passed through three first­

order filters, all having cutoff frequencies of 25 Hz. The purpose of
 

this filtering was to specify accurately the high-frequency roll-off so
 

that the actual PSD could be precisely defined. The PSD used for the
 

numerical demonstration is defined as
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a2f 6
 

rCf) = (f2+fc2)3 for 0 < f < 40 (94) 

C 

= 0 - for f > 40 

where f = 25 Hz, and
C 

2
 
a = 2.785 is the magnitude factor determined
 

empirically from the generated output.
 

Figure 4.3-1 presents time histories of the unfiltered random noise pro­

duced directly by the Elgenco Noise Generator and of the random noise after
 

it was passed through three 25 Hz filters.
 

To determine the actual mean and standard deviation of the generated time
 

series, a statistical analysis of the filtered output time history was
 

performed, based on the assumptions of ergodicity and stati.onarity. A
 

twenty-second duration of the output from the noise generator was sampled
 

at 0.02-second intervals to provide 1000 data points. The'mean and standard
 

deviation of this large sample were then computed with the following
 

results:
 

S= -0.229
 

a = 6.418 

These statistical estimates were assumed to be the true parameters of the
 

generated time series for all subsequent studies.
 

A Chi-square goodness-of-fit test (Reference 8, p. 365) was also performed
 

with the sample of 1000 data points to verify that the generated output
 

was Gaussian. The Chi-square statistic, based on a division of the data
 

into 19 cells, was 19. This value corresponds to a Chi-square cumulative
 

probability of less than 75 percent. Therefore, the random time histories
 

obtained from the noise generator may be justifiably considered Gaussian
 

with parametric values as estimated.
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The magnitude factor of 2.785 used in the PSD expression defined by
 

Equation (94) is consistent with the empirically determined standard
 

deviation. With this PSD expression, the expected rate of zero crossings
 

per second with positive slope was calculated to be 12.77. This compares
 

well with the observed average of 13.0 taken from 26 seconds of the generated
 

random time history.
 

Because the theory developed in Section 3.3 applies only to Gaussian random
 

processes having zero mean values, the DC bias of -0.229 was subtracted
 

from the generated time histories for all subsequent numerical comparisons.
 

Each desired extreme-value observation was defined as the largest positive
 

value occurring in a specified time duration, T. The theoretical symmetry
 

of-the Gaussian distribution was used to assure uniformity of the extreme­

value data. Thus, observations of extremes were taken equally from the
 

positive and negative peaks, and the absolute values of the two data sets
 

were combined into one total sample. The positive and negative data values'
 

were selected from different sections of the random time history, except
 

for the data corresponding to T = 100 seconds. According to Gumbel
 

(Reference 1, p. 110), the extreme largest and extreme smallest values are
 

asymptotically independent for large samples. Thus, the combining of
 

positive and negative extreme values from the same time-.history section for
 

T = 100 seconds is believed to be justified theoretically.
 

Verifying that observed extreme values from a generated time series behave
 

mathematicall.y as normal extremes was accomplished by comparing observed
 

and theoretical cumulative probability distributions. The theoretical
 

probability distribution, representing the largest individual in samples
 

of size n taken from a standardized normal population, was tabulated by
 

K. Pearson in Reference 2, (page 162). The basic relation between sample
 

size (n) and characteristic largest value (u) for a specified distribution
 

is given by Gumbel (Reference 1, page 82) by
 

F(u) = 1 - 1 (2)

n 
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The theoretical distribution of standardized normal extremes for 200 dis­

crete samples, which corresponds to a standardized characteristic largest
 

value of 2.5758, was selected for comparison with an observed extreme­

value distribution obtained from the generated time series. From Equation
 

(77), the value of T corresponding to this characteristic largest value is
 

2.161 seconds for the specified PSD. The observed probability distribution
 

was obtained from 200 samples of largest values occurring in time intervals
 

of 2.161 seconds from the generated random time history. The 200 values
 

were modified to eliminate the DC bias and then ranked in increasing order
 

using the mean plotting positions defined by Equation (46).
 

The comparison between the observed and theoretical distributions is shown
 

in Figure 4.3-2. The excellent agreement is corroborated by a Chi-square
 

test of the hypothesis that the observed distribution is identical to the
 

theoretical distribution of normal extremes. The Chi-square statistic,
 

based on a division of the data into 20 cells, was 22.8. This value cor­

responds to a Chi-square cumulative probability of approximately 80
 

percent. Therefore, the observed extreme values obtained from the generated
 

random time series may be considered as normal extremes from a discrete
 

sample of size n, where n is determined from Equation (2) given the char­

acteristic largest value.
 

Verifying the accuracy of the lognormal approximation to represent normal
 

extremes in terms of the standardized characteristic largest value from
 

Equation (77) was accomplished by comparing the approximating distribution
 

with the distribution of observed extremes for three different time intervals,
 

T. For T = 1.0 second, the standardized characteristic largest value cor­

responding to the specified PSD is 2.2570. This is in the range where the
 

lognormal di.stribution provides a very accurate representation of the actual
 

distribution of normal extremes. The required lognormal parameters were
 

obtained from Equations (24), (26), and (79) of Section 3.3. The straight
 

line in Figure 4.3-3 corresponds to tn( 'o) = 2.733 and 6 = 0.183. The log­

normal approximation is seen to provide a very good representation of the
 

observed distribution plotted from 500 data points.
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For T = 20 seconds, the standardized characteri-stic largest value correspond­

ing to the specified PSD is 3.3295. The lognormal parameters are tn(y'o)
 

3.092 and 6 = 0.119. The lognormal approximation provides an adequate
 

representation of the observed distribution plotted from 120 data points
 

as shown in Figure 4.3-4. For T = 100 seconds, the standardized char­

acteristic largest value determined from Equation (77) is 3.7821. The log­

normal parameters are in(.o) = 3.213 and 6 = 0.101. The comparison shown
 

in Figure 4.3-5 for 200 data points is again adequate. The observed dis­

tributions are truncated in Figures 4.3-4 and 4.3-5 due to limitations in
 

pen travel while the analog data was generated. The observed distributions
 

would be expected to Intersect the predicted straight lines near the 99.9
 

percentile values as shown in Figure 2.1-1.
 

The basic methodology is seen to provide accurate values for the character­

istic largest value and median of the desired limit-load distribution from
 

a Gaussian process. The lognormal approximation is also seen to represent
 

the theoretical normal extreme distribution with sufficient-accuracy for
 

engineering applications.
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4.4 Examples of Random Combination Method
 

Approximate methods are described in Section 3.4 for combining the results
 

of time-domain and frequency-domain loads analyses. The methods provide
 

estimates of the probability distributions for total limit loads of idealized
 

boost and maneuver loading conditions. Numerical demonstrations of these
 

methods using typical data values indicate that lognormal distributions with
 

easily calculated parameters provide adequate representations of the "exact"
 

distributions determined by numerically evaluating the convolution integrals.
 

For the boost loading condition, the turbulence load is assumed to comprise
 

less than 20 percent of the total load and to have a characteristic largest
 

value (u^)less than unity. For a numerical demonstration using typical
 

data values obtained from Reference 25, the extreme transient load (X) and
 

the instantaneous turbulence load (Z) are distributed as follows:
 

Z b normal (mZ = 0, sZ 5) 

X lognormal (mX = 30,V X = 0.3) 

The mean and coefficient of variation of the total limit load are obtained
 

from Equations (81) and (82) as
 

= 30 

VT = 0.3432 

The convolution integral was evaluated numerically by the WATFOR program
 

listed in Appendix II. The resulting "exact" cumulative distribution function
 

(CDF) is plotted in 'Figure 4.4-1 along with the lognormal approximation with
 

parameters mT and VT The lognormal approximation is seen to provide an
 

adequate representation, although it is slightly conservative in the primary
 

region of interest. At the 99.99 percent probability level, the lognormal
 

approximation overestimates the "exact" distribution by 13 percent for this
 

example.
 

For the maneuver loading condition, the turbulence load may comprise up to
 

50 percent of the total load and the "steady-state" load is assumed to have
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a coefficient of vartation less than about ten percent. For a numerical
 

demonstration using typical data values, the extreme turbulence load (Z)
 

and the "steady-state" load X) are distributed as follows:
 

Z rv normal (mZ = 25, s = 2) 

X . lognormal (mX = 15, VX = 0.2) 

The mean and coefficient of variation of the total limit load are
 

mT = 40
 

VT = 0.0901
 

The "exact" distribution obtained by numerically evaluating the convolution
 

integral is plotted in Figure 4.4-2 along with the lognorma-l approximation.
 

Since the normal and lognormal distributions are essentially identical for.
 

coefficients of variation less than ten percent, the close agreement between
 

the "exact" CDF and the lognormal approximation is expected. At the 99.99
 

percent probability-level, the lognormal approximation underestimates the
 

"exact" distribution by less than two percent for this example.
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5.0 CONCLUSIONS AND RECOMMENDATIONS
 

Methods for determining limit-load probability distributions from time­

domain and frequency-domain dynamic loads analyses have been described and
 

numerically demonstrated. The primary contribution is obtaining the extreme­

value probability distributions from the Gaussian PSD of a frequency-domain
 

analysis. Other significant contributions inc'lude methods for obtaining
 

conservative estimates of limit-load probability distributions: ffom a small
 

number of Monte Carlo simulations and for determining probabilistic limit
 

loads from a combination of time-domain and frequency-domain dynamic loads
 

analyses.
 

The primary areas for additional research are in extending the applicability
 

of probabilistic concepts to strength analysis, structural testing, and other
 

engineering decisions associated with aerospace stru6tural systems.
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APPENDIX I: WATFOR PROGRAM LISTING FOR STATISTICAL ESTIMATION METHOD
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*JOB ID=SEM 
C 
C *** STATISTICAL ESTIMATION METHOD *** 
C 
C THIS PROGRAM COMPUTES THE LEAST-SQUARES ESTIMATES OF THE LOGNORMAL 
C MEAN (MXGI AND COEFFICIENT OF VARIATION (VXG) FOR A SPECIFIED MONTE 
C CARLO SAMPLE SIZE AND ONE-SIDED NORMAL CONFIDENCE LEVEL.
 
C
 

REAL K1,KGAM,MX,MXG,MYG,MYN
 
REAL ATA(33,ATAI(3),ATF(2),B(20),F(20),FCc20),KALPH20KC(20
 

C
 
C INPUT NUMBER OF POINTS FOR USE IN LEAST-SQUARES ANALYSIS (M), FIRST
 
C KALPH VALUE (Kl), AND KALPH INCREMENTS (DEL). KALPH DEFINES THE NORMAL
 
C PROBABILITY LEVELS TO BE USED IN THE LEAST-SQUARES ANALYSIS.
 
C
 

READ,M,K1,DEL
 
PRINT,M,K1,DEL
 
XM=FLOAT{M)
 
KALPH(I) = KI"
 
DO 10 I=2,M
 

10 KALPH(I) = KALPH(I-1) + DEL
 
C
 
C INPUT THE LOGNORMAL MEAN (MX) AND COEFFICIENT OF VARIATION (VX) FROM
 
C A MONTE CARLO SAMPLE OF SIZE N AND THE STANDARDIZED NORMAL VARIATE
 
C (KGAM) CORRESPONDING TO THE DESIRED ONE-SIDED CONFIDENCE LEVEL
 
C PROBABILITY. INPUT ONE CARD FOR EACH DESIRED CASE AND TERMINATE THE-

C RUN WITH A BLANK CARD AT THE END OF THE DATA DECK.
 
C
 

15 READMX,VXN,KGAM
 
-C
 
C TRANSFORM LOGNORMAL PARAMETERS TO MEAN OF LOGS (MYN) AND STANDARD
 
C DEVIATION OF LOGS tSYNI.
 
C 

XN = FLOAT(NI 
MYN ALOG(MX/(SQRT(I.O + VX*VX))) 
SYN SQRT(ALOG(I.O + VX*VX))
 

C
 
C CALCULATE M VALUES OF THE ONE-SIDED CONFIDENCE LIMIT CORRESPONDING
 
C TO THE GIVEN KALPHIS.
 
C"
 

C = (2.O*XN-3.0)/(2.O*XN-2.O)
 
A = C - (KGAM*KGAM)/12.O*(XN-1.O))
 
DO 20 I=1,M
 
B(1) = KALPH(I)*KALPH(I)/(2.O*(XN-1.O))
 
KC(I) = (KALPH(I)*SQRT(C) + KGAM*SQRT(BI)+A/XN))/A
 

FI) = MYN + KC(I)*SYN
 
20 CONTINUE
 

C
 
C PERFORP THE LEAST-SOUARES CALCULATION OF NORMAL MEAN (MYG) AND
 
C NORMAL STANDARD DEVIATION (SYG).
 
C
 

ATA(II=XM
 
ATA(2)=O.O
 
ATA(3)=O.O
 
DO 30 1=1,
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ATA(21 = ATA(2) + KALPH(1)
 
ATA(3J = ATAI3) + KALPHII)*KALPH(E)
 

30 	 CCNTINUE
 
D = ATA(1)*ATA(3) - ATA(2)*ATA(2)
 
ATAI(1) = ATA(3)/D
 
ATAIC2) =-ATA(2)/D
 
ATAI(3) ATA(M)/D
 
ATFIl) = 0.0
 
ATF(2) = 0.0
 
DO 40 1=1,M
 
ATF(I) = ATF(1) + Fir)
 
ATFC2)=ATF(21 + F(I)*KALPH(I)
 

40 	 CONTINUE
 
MYG = ATAI(1)*ATF(l) + ATAI(2)*ATF(2)
 
SYG = ATAI(2)*ATF({) + ATAI(3)*ATF(2)
 

C
 
C TRANSFORM BACK TO LOGNORMAL PARAMETERS.
 
C
 

VXG = SQRT(EXP(SYG*SYG)-t.O)
 
MXG = (SQRT(I.O+VXG*VXG))*(EXP(MYG))
 

C
 
C BACK SUBSTITUTE FOR COMPARISON WITH ACTUAL ONE-SIDED CONFIDENCE LIMITS.
 
C
 

00 50 I=lM
 
50 FC(C) = MYG + KALPH(I)*SYG
 

C
 
C PRINT DESIRED OUTPUT AND REPEAT CALCULATIONS FOR NEXT CASE.
 
C
 

PRINT,MX,VX,NKGAM
 
PRINT,MXG,VXG
 
PRINT,MYN,SYN,MYG,SYG
 
PRINT,{KALPH( ),I=I, ),(KC(I),I=1,M)
 
PRINT, F(I),1=I,M),(FC(1),I=I,H)
 
GO TO 15
 

60 STOP
 
END
 

*EXECUTE
 
10, -4.0, 1.0
 

2.467, .1845, 20, 1.28
 
2.2655, .1681, 20, 1.28
 
2.5085, .2352, 20, 1.28
 
2.4335, .1905, 20, 1.28
 
2.5254, .1834, 20, 1.28
 
2.4888, .1467, 20# 1.28
 
2.4295, .1475, 20, 1.28
 
2.5657, .1552, 20, 1.28
 
2.291, .1696, 20, 1.28
 
2.3984, .1763, 20,_ 1.28
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APPENDIX 11: WATFOR PROGRAM LISTING FOR RANDOM COMBINATION METHOD
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*JOB ID=CNLV
 
C 
C *** COMBINATION, OF NORMAL AND LOGNORMAL VARIABLES 
 ***
 
C 
C THIS PROGRAA CO:PUTES THE CDF OF TL = Z + X WHERE Z IS NORMAL
 
C hITH FEAN 1Z AND STANCAHC DEVIATION SZ AND X IS LOGNORMAL WITH MEAN
 
C FX AND COEFFICIENT OF VARIATION VK.
 
C
 

REAL PZ, MX, PT, INT7
 
REAL AILOO), X(100), PDFTCIOO), TLCIOQI, CDFT(201, TT(20)
 

C 
C INPUT NCRMAL AND LCGNORMAL PARAMETERS. INPUT ONE CARD FOR EACH DESIRED
 
C CASE AND TERMINATE THE RUN WITH A BLANK CARD AT THE END OF THE DATA
 
C DECK. CALCULATE PEAN OF LOGA4ITHXS (G) AND STANDARD DEVIATION OF
 
C LOGARITHMS (C) FCR THE LCGNORMAL VARIABLE (X) AND CONSTANT (C) TO BE
 
C USED IN THE CONVOLUTION INTEGRAL.
 
C
 

10 	 REACMZSZMX,VX
 
D = SCRT(ALOG(I.O+VX**2))
 
G = ALOG(MX) - 0.5*0*t2
 
C = 	l.0/(6.283185*D*SZ)
 

C 
C CALCULATE THE MEAN (MT) AND STANDARD DEVIATION (ST) OF TL USING
 
C THE TAYLOR'S SERIES METHOD. NOTE THAT THESE EQUATIONS ARE EXACT SINCE
 
C TL IS A LINEAR FUNCTION. 
C 

MT = MZ + MX 
ST = SORT(SZ**2 + (MX**2)*IVX4 2))
 

C 
C CALCULATE THE DESIRED 
RANGE (R) FOR THE CDF OF TL AND DEFINE THE
 
C INTERVALS (HT) TO BE USEC. NOTE THAT THE NUMBER OF 

C MUST BE DIVISIBLE BY 6 SINCE A 7-POINT OUADRATURE 

C IS USED FOR INTEGRATING.
 
C 

TI = MT - 6.0*ST
 
T2 = MT + 7.0*ST
 
R = T2 -Ti
 
KK = 96
 
XKK =FLOAT(KK)
 
HT = R/XKK
 

C 

INTERVALS (KK)-

FUNCTION (INT7)
 

C FOR EACH OF THE (KK+I) VALUES OF TL, DETERMINE UPPER (X2) AND LOWER (XI)

C LIMITS OF I:4TEGRATIOA4, CALCULATE THE DESIRED RANGE (RR) FOR EACH
 
C INTEGRATICN, AND DEFINE THE INTERVALS (HX) TO BE USED. NOTE THAT THE
 
C NUMBER OF INTFRVALS (JJ MUST BE DIVISIBLE BY 6.
 
C 

KK = KK + i 
DO 20 K=I,KK 
JK = K - I
 
XK = FLOAT(JK)
 
TL(K) = TI + R*XK/XKK
 
XIL = EXP(G-6.7*D)
 
XIN = TL(K) - PZ - 6.7*SZ
 
X2L = EXP(G + t.OD)
 
X2N = TLIK) - HZ + 8.0*SZ
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XI = XIL 
IF(XI.LT.XUN) X=XIN
 
X2 = X2N
 
IF(X2.GT.X2L) X2=X2L
 
IFCX2.LE.X1) GO TO 25
 
RR = X2 - Xl
 
JJ = 96
 
YJJ = FLOAT(JJ)
 
HX = RR/YJJ
 

C
 
C EVALUATE THE FUNCTION TO BE INTEGRATED 1A) AT THE (JJ+l) EQUALY-

C SPACED POINTS.
 
C 

JJ = JJ + I 
00 30 J=lJJ
 
KJ = J - I
 
YJ = FLOAT(KJ)
 
X(J) = Xl + RR4YJ/YJJ
 
A(J) = tC/X(J))*EXP(-O.5*(((ALOG(X(J))-G)/D)**2((TL(K)-XfJ)-MZ)
 

1/SZ)**2)
 
30 CONTINUE
 

C
 
C PERFCRP THE NUMERICAL INTEGRATION OF A USING A 7-POINT QUADRATURE
 
C FORPULA KNOWN AS WEDDLE-S RULE. THE RESULT IS THE PDF OF TL EVALUATED
 
C AT THE (KK+t) EQUALLY-SPACEU POINTS.
 
C
 

N = JJ/6
 
PCFT(K) = INT7(N,HX,A)
 
G TO 20
GC 


25 PDFT(K) = 0.0
 
20 CONTINUE
 

C
 
C PERFOR' THE NUMERICAL INTEGRATION OF POFT USING WEDDLE'S RULE.
 
C TFE RESULT IS THE CDF OF TL EVALUATED AT KKI6 EQUALLY-SPACED POINTS.
 
C 

DO 4C L=7,KK,6
 
LL = L/6
 
CCFT(LL) = INTT(LL,HTPDFT)
 
TT(LL) = TL(L}
 

40 CONTINUE
 
C 
C PRINT CESIRED OUTPUT ANC REPEAT CALCULATIONS 

C
 

PRINT,MZ, SZMX,VX,GD
 
PRINKT,ME,ST
 
KKK = KK/L
 
PRINT, (TT(LL), LL=I,KKKI
 
PRINT,(CUFTILL), LLLIKKKI
 
GO TO 10
 
STOP
 
END
 

C
 

FOR NEXT CASE.
 

C THIS SUBPROGRAM INTEGRATES A FUNCTION (A) USING WEDDLE'S RULE. THE 
C RANGE OF A IS 6*NN*H. THE NUMBER OF POINTS IN A IS 6*NNI. 
C 
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REAL FUNCTION INT7(NU,H,A)
 
REAL A(IO0)
 
SUPI = 0.0
 
SUM2 = 0.0
 
CC 10 I=I,NN
 
SUM2=SUM2+A(6*T-5)*A(6*I-3)+A(6*1-i3+A(6*I+1)
 

.10 SUMI=SUMI+5.0*AI6*I-A)+A(6*I))+6.O*(A(6*-2))
 
INT7= 0.3*h*(SUI1SUM2,)
 
RE[URN
 
END
 

VEXECUTE
 
0.0. 5.0, 30.0, 0
 
25.0, 2.0,. 15.0,
 

*EOJ
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. f METHODS FOR COMBINING PAYLOAD PARANETER 

Research9Engineering Division VARIATIONS WITH INPUT ENVIRONMENT
 
BOEING AEROSPACE COMPANY (NAS8-si 240)
 

PURPOSE:
 

TO DESCRIBE AND NUMERICALLY DEMONSTRATE METHODS FOR DETERMINING LIMIT...
 
LOADS COMPATIBLE WITH PROBABILISTIC STRUCTURAL DESIGN CRITERIA.
 

LIMITATIONS:
 

o EFFECTS OF STRUCTURAL FATIGUE NOT CONSIDERED 
o RATIONALE FOR SELECTING FAILURE PROBABILITY NOT CONSIDERED 
o THEORY FOR DECISIONS INVOLVING OPERATIONAL CONSTRAINTS NOT
 

CONSIDERED.
 

D. H. MERCHANT
 
BOEING AEROSPACE CO,
 
MAY 19, 1976
 

THE ,4dg 'f"7f4COMPANY 
SEATTLE. WASHINGTON 



DISCUSSION TOPICS
 

o 	PROBABILISTIC STRUCTURAL DESIGN CRITERIA
 

o 	LIMIT-LOAD PROBABILITY DISTRIBUTIONS
 

o 	EXAMPLE METHODS FOR DETERMINING PROBABILISTIC 

LIMIT LOADS 

- MONTE CARLO SIMULATIONS 

- FREQUENCY-DOMAIN SIMULATIONS 

o 	CONCLUSIONS AND RECOMMENDATIONS
 

THE 047AVOAV"COMPAN Y
 

SEATTLE, WASHINGTON
 



DEFINITIONS FOR PROBABILISTIC STRUCTURAL
 

DESIGN CRITERIA
 

LIMIT LOAD (L)- A RANDOM VARIABLE DESCRIBING THE LARGEST LOAD
 

OCCURRING INA MISSION FOR A GIVEN COMPONENT
 

DESIGN LIMIT LOAD (LD) - A PARTICULAR VALUE OF THE RANDOM LIMIT LOAD
 

CORRESPONDING TO A SPECIFIED PROBABILITY LEVEL
 

STRENGTH (S)- A RANDOM VARIABLE DESCRIBING THE RESISTANCE OR 

CAPABILITY OF A GIVEN OOMPONENT 

ALLOWABLE STRENGTH (SA ) - A PARTICULAR VALUE OF THE RANDOM STRENGTH
 

CORRESPONDING TO A SPECIFIED PROBABILITY LEVEL.
 

PROBABILITY OF FAILURE (PF = PEL > SJ) -

THE PROBABILITY THAT THE RANDOM LIMIT LOAD EXCEEDS THE RANDOM 

STRENGTH FOR A GIVEN COMPONENT 

FACTOR OF SAFETY (FS = SA/LD) - A PROCEDURE FOR DEFINING THE REQUIRED
 

STRENGTH PROBABILITY DISTRIBUTION RELATIVE TO THE KNOWN LIMIT-LOAD
 

PROBABILITY DISTRIBUTION SUCH THAT A SPECIFIED PROBABILITY OF
 

FAILURE IS ACHIEVED
 

THE ,aWAd~fflNCOMPA
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0 

COMPONENT FACTOR-OF-SAFETY FOR LOGNORMAL LOAD AND STRENGTH
 

USING ANG-AMIN COEFFICIENT OF UNCERTAINTY
 

o THE 	BASIC ANG-AMIN PROBABILITY STATEMENT IS PF = P [S/L < v]
 

o 	 IF S AND L ARE INDEPENDENT LOGNORMAL RANDOM VARIABLES, THEN Z = LN S - tN' LIS 

NORMALLY DISTRIBUTED WITH STANDARD DEVIATION EQUAL TO 

=z 
 Jzn [(I 	+ V) + V2)l 

THE CUMULATIVE NORMAL PROBABILITY DISTRIBUTION FOR ZERO MEAN AND UNIT STANDARD DEVIATION
 

IS DEFINED AS
 
t 2II Kpi 

=Pi r2 	_]_e .d 
a - I e- dt 

o THE 	COMPONENT FACTOR-OF-SAFETY IS DERIVED AS 

SA zn[~~~(l+Vj2) (l+V2)'n +Z) 	 $ 
FS v-exp - [KpF 	 + KpA + KpA


Zf 	 PD \LlVL KFS=D 	 Pp LVJISJ KPA + tnt 

WHERE 	 PD ISPROBABILITY OF LOAD NOT EXCEEDING LIMIT LOAD
 

PA ISPROBABILITY OF STRENGTH EXCEEDING ALLOWABLE STRENGTH.­

o THE 	REQUIRED COMPONENT ALLOWABLE STRENGTH ISTHEN
 

+KA l=fl+I+VL)j 
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LIMIT-LOAD PROBABILITY DISTRIBUTIONS
 

o DEFINITIONS:
 

o 	"LIMIT LOAD" IS A RANDOM VARIABLE DESCRIBING THE LARGEST LOAD OCCURRING INA MISSION
 
o 	THE PROBABILITY THEORY OF EXTREME VALUES ISDIRECTLY APPLICABLE FOR DETERMINING
 

PROBABILISTIC LIMIT LOADS
 

o 	FOR A MISSION CONSISTING OF n INDEPENDENT OCCURRENCES OF APPLIED LOAD, THE
 
THEORETICALLY CORRECT LIMIT-LOAD PROBABILITY DISTRIBUTION IS
 

n
 
on(x) = [F(x)]

o 	CHARACTERISTIC LARGEST VALUE FOR n INDEPENDENT OCCURRENCES
 

F(un) = 1 - I 
n n 

EXTREMAL INTENSITY FUNCTION FOR n INDEPENDENT OCCURRENCES
 

f(u n)
 
~n1TF(U )T
 

a LIMIT-LOAD PROBABILITY DISTRIBUTIONS
 

o WHEN F(x) IS OF THE EXPONENTIAL TYPE, on(X) IS EXTREMAL TYPE I FOR LARGE n
 

6(1)(x) = exp(-e -a Cxun)) 

WHEN THE COEFFICIENT OF VARIATION ISAPPROXIMATELY 0.36, THE EXTREMAL TYPE I
 
DISTRIBUTION IS IDENTICAL TO THE LOGNORMAL DISTRIBUTION
 

o FOR THE STRUCTURAL DESIGN OF AEROSPACE VEHICLES, THE LOGNORMAL DISTRIBUTION
 
PROVIDES A GENERALLY ADEQUATE APPROXIMATION TO THE THEORETICALLY CORRECT
 
LIMIT-LOAD DISTRIBUTION.
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LIMIT LOADS FROM MONTE CARLO SIMULATIONS
 

'a THE MONTE CARLO METHOD OF STATISTICAL SIMULATION ISA POWERFUL TOOL FOR
 

RATIONALLY COMBINING PARAMETERS INDESIGN LOADS ANALYSES
 

o 	THE LIMIT-LOAD DISTRIBUTION FOR A COMPONENT MAY BE ESTIMATED FROM THE n
 

LARGEST LOADS OBTAINED FROM EACH QF n MISSION SIMULATIONS
 

o 	TECHNIQUES FOR REDUCING THE COST OF COMPUTER SIMULATIONS ARE REQUIRED
 

FOR WIDER ACCEPTANCE OF THE METHOD
 

o THREE SUCH TECHNIQUES ARE APPLICABLE FOR THE DESIGN OF AEROSPACE VEHICLES:
 

o 	STATISTICAL ESTIMATION - CONSERVATIVELY ESTIMATING DESIRED PARAMETERS
 

BY "STRAIGHTFORWARD" SAMPLING AND ONE-SIDED NORMAL CONFIDENCE LIMITS
 

o 	LEAST-SQUARES.ESTIMATION - CONSERVATIVELY ESTIMATING DESIRED PARAMETERS
 

BY "RUSSIAN ROULETTE" SAMPLING AND ONE-SIDED NON-PARAMETRIC CONFIDENCE
 

LIMITS WITH THE CENSORED NORMAL SAMPLE
 

o 	USE OF EXPECTED'VALUES - SEPARATING COMPUTATIONAL TASKS INTO ANALYTICAL,
 

AND MONTE CARLO'CALCULATIONS AND COMBINING THE RESULTING DISTRIBUTIONS
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0 

LIMIT LOADS FROM FREQUENCY-DOMAIN SIMULATIONS
 

GIVEN THE LOAD PSD, STANDARD METHODS ARE AVAILABLE FOR DETERMINING THE
 

DISTRIBUTION OF NOMINAL LOADS, THE DISTRIBUTION OF PEAK LOADS, AND THE
 

EXPECTED RATE OF EXCEEDANCE OF SPECIFIED THRESHOLD VALUES.
 

o 	A METHOD WAS DEVELOPED FOR DETERMINING THE DISTRIBUTION OF THE EXTREME
 

LARGEST VALUE OF A GAUSSIAN PROCESS OCCURRING WITHIN A GIVEN MISSION LENGTH.
 

RICE'S FORMULA OBTAINS THE EXPECTED NUMBER OF THRESHOLD CROSSINGS IN
o 


A GIVEN TIME OR DISTANCE.
 

o 	THE CHARACTERISTIC LARGEST VALUE () ISTHE THRESHOLD VALUE WHOSE
 

EXPECTED NUMBER OF CROSSINGS ISUNITY
 

u= 	-_ = [2 ±n(T.E[N+(O))]f/2 

o THE EXACT EXTREME-VALUE DISTRIBUTION OF THE DESIRED LIMIT LOAD IS
 

on(x) = [FN(X)Jn WHERE 1 .... 1IFN (0) 

o 	THE LOGNORMAL AND EXTREMAL TYPE III DISTRIBUTIONS MAY BE USED TC
 

APPROXIMATE THE EXACT DISTRIBUTION OF NORMAL'EXTREMES FOR SMALL
 

AND MODERATE VALUES OF'n.
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CONCLUSIONS AND RECOMMENDATIONS
 

o PRIMARY CONTRIBUTIONS: 

o 	EXTREME-VALUE DISTRIBUTIONS FROM THE PSD OF A GAUSSIAN FREQUENCY-


DOMAIN ANALYSIS
 

o 	CONSERVATIVE ESTIMATES OF LIMIT-LOAD DISTRIBUTIONS FROM A SMALL
 

NUMBER OF MONTE CARLO SIMULATIONS
 

o 	 APPROXIMATE LIMIT-LOAD DISTRIBUTIONS FROM A COMBINATION OF TIME-

DOMAIN AND FREQUENCY-DOMAIN ANALYSES 

o 	 RECOMMENDED AREAS FOR FUTURE RESEARCH ARE INVOLVED WITH EXTENDING APPLIC-

ABILITY OF PROBABILISTIC CONCEPTS TO 

o STRENGTH ANALYSIS INCLUDING FATIGUE AND FRACTURE CONSIDERATIONS
 

o STRUCTURAL TESTING
 

o ENGINEERING DECISIONS ASSOCIATED WITH AEROSPACE STRUCTURAL SYSTEMS 

THE V7.AO,'97 COMPANY 
SEATTLE, WASHINGTON 


