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ABSTRACT 

Methods are presented for calculating design limit loads compatible with 

probabilistic structural design criteria. The approach is based on the 

concept that the desired "limit load," defined as the largest load occurring 

in a mission, is a random variable having a specific probability distribution 

which may be determined from extreme-value theory. The "design limit load," 

defined as a particular value of this random limit load, is the value 

conventionally used in structural design. Methods are presented for deter- 

mining the limit load prob2bility distributions from both time-domain and 

frequency-domain dynamic load simulations. Numerital demonstrations of the 

methods are also presented. 
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The purpose of this report is to describe and r~umerically demonstrate methods 

for combining payload pgrameter variations with the input environment in 

probabilistic structural design loads a~alyses. The design loads resulting 

irom these methods are compatible with probabilistic structural design criteria. 

The approach is based on the cmcept that the oesired "limit load," deftned 

as the largest load occurring in a mission, is a random variable having a 

specific probability distribution which may be determined from the extreme- 

value theory of probability. The "design limit load," defined as a particular 

value of this random limit load, is the value conventionally used in structural 

design. 

The scope of this study was limited in three general areas. First, no attenpt 

was made to include the effects of structural fatigue. The technical theory 

is concerned only with structural designs corresponding to the single applica- 

tion of an extrene load to an undamaged structure. Second, no attempt was 

made to define rationale for selecting acceptable probabilities of failure 

to be used in the str~ctural design criteria. Third, thz technical theory ! 
i 

is concerned only with the preliminary design/redesign/design verification 

phases of a project. No attempt was 7ade to address the inverse problem of 

operational constraints and decisions. 

A discussion of a proven general probabilistic structural design approach 

is presented in Section 2.0 along with some basic results of extreme-value 

theory which are particularly applicable to structural loads. Section 3.0 

presents methods for determining extreme-value limit-load probability 

distributions from converitional time-doziain and frequency-domin dynamic 

loads analyses. Numerical demonstrations of each of these methods are 

presented in Section 4.5. Conclusions from the present research and 

recommended a;eas for future research are presented in Section S . G .  A 
-. i comprehensive list of references conp!etes this report. 



2.0 THEORETlCAL BACKGROUND i 
3 

The concept of a randomly varying limit load described by a theoretically 

correct p;obability distribution and the use of a particular value of 

this random 1 ini t load for structi~ral design purposes a r e  of basic import- 

ance in probabilistic structural design criteria. Since the limit load 

is conventionally defined as the largest load occurring in a mission, 

the probability theory of extreme values i s  useful in determining the 

theoretically correct limit-load probability distribution. Section 2.1 

contains some basic results of extreme-value theory which are particuiarly 

applicable to structural loads. Since the determination of probabilistic 

structural loads i s  meaningful only within the larger context of structural 

design, Section 2.2 includes details of the application of probabilistic 

load quantities in a general structural design approach. 



2.1 Limit-Load Probability Distributions 

The limit load for a structural component is conventionally defined as the 

; largest load occurri~g durlrlr, .r given mission. The probability that the 

component load x is the largest value among n independent observations is 

defined by 

where F(x) is the underlying cumulative distribution function (CDF) for the 

load. Thus C,(x) is, by definition, the ccmulative distribution function 

of the limit load for a mission which has n independent occurrences of apglied 

load. The probability theory of extreme values, as presented by Gumbel 

(Reference I), is concerned with describing the limit-load distribution 

funccion (3 ) for various forms of the underlying distribution (F). 
n 

Two parameters frequently used in extreze-v?lue theory are the characteristic 

largest value and the extremal intensity func'ion. The characteristic 

I largest value (un) in a Sample of n observztions is defined by Gumbel 

(Reference I, page 82) in terms of the following equation: 

where F[U ) is the underlying CDF evaluated at the characteristic largest value. 
n 

Thus, as indicated by Equation (2), un is that value of the random variab!e 

which will be equzlled or exceeded one time in n observations, on the average. 

The extremal intensity function (an) in a san~le of n observations is defined 

by Gunbel (Reference 1, page 84) as follows: 

where f(u ) is the underlying probability density function (PDF) and F(U ) is 
n n 

the underlying CDF, both evaluated at the characteristic largest value. The 

inverse of the extrenal intensity function, called Mill's ratio, is tabulated 

by K. Pearson for the normal distribution (Reference 2, page 11). 
-- -- . F 



The unde r l y i ng  d i s t r i b u t i o n  ~ ( x )  i s  s a i d  t o  be o f  the  e x ~ o n e n t i a l  type i f  

f ( x )  appro3ches zero f o r  l a rge  1x1 a t  l e a s t  as f a s t  as the  e x ~ o n e n t i a l  
- Xx 

d i s t r i b u t i o n ,  f ( x )  = Xe . For any d i s t r i b u t i o n  o f  the expoccn t ia l  tyoe, 

Gumbel (Reference 1, page 16C) sho..~s t h a t  the CDF f o r  la rge  x Is anbiox- 

imate ly  equal t o  

An asymptot iz  d i s t r i b u t i o n  o f  e x t r e t e  l a r g e s t  values can be obta ined by 

s u b s t i t u t i n g  Equst ion (4) i n t o  Equarion (1) and t ak i ng  the 1 init as n  

becones i n f i n i t e  

Eva lua t ing  t h i s  l i m i t  by mans  o f  the l oga r i t hm ic  >cries r e s u l t s  i n  the  

f i r s t  asycp to t i c  d i s t r i b u t i o n  o f  ex t rece  l a rges t  values, subsecuentiy 

c a l l e d  t he  e x t r e l a l  type. I d i s t r i b u t i o n :  

The corresponding PDF, which i s  p o s i t i v e l y  skewed, i s  g iven by 

(1) -an (x-u,,) + (x) = s n  exp (x-un) -e . I 
The most probable va lue o r  node (m,) o f  t h i s  d i s t r i b u t i o n  i s  equal t o  the 

c h a r a c t e r i s t i c  l a r g e s t  value: 

m = u  
o n 

The f i f t y - p e r c e n t i l e  va l ue  o r  median (me) i s  g iven  by 

m = u  - tn(-?.n0.5) = ti + 0.3665!292 
n  

e  n  a  a  

The mean (n) i s  

where C = 0.57721566 i s  Eu le r ' s  constant .  E 



The standard deviaticn (sf is given by 

and the coefficient of variation (V  = s/m) is 

Equations (10) through (12) define parametr ic vslues for the extremal tyse 

I distribution corresaonding to a single mission. Parametric values for 

the largest load occurring in N missions are as follows: 

These relations are derived in Reference 3 (nage 6 7 )  - Note that the 

standard deviation (s )  and the extrenal int:'.nsity function ( r  ) for the 
n 

extremal type I distribution are theoretically independent of sanple size. 

According to Gu~bel (~eference 1, page 182) the extrenal type 1 distribution 

is oftt,r satisfactorily represented by the lognormal distribution. The 

lognormal distribution with coefficient of variarion equal to 0.364 is 

essentially identical to the extreral type 1 distribution. For cceificients 

of variation between 0.31 and 0.42, the extrenl and lognorml distributions 

are graphically indistinguishable. An exsn~le of the validity oi the icg- 

normal a~pro~iration to the extre~lal type I distribution is ~ i v e n  in Referenie 

4. For this analysis, 28 sets of internal lead quantities were calculated 

as the maximum valces exoerienced in each of 180 sirulated lunar landincs. 

A Chi-square test of the hy~othesis that the loads were lognormaliy dis- 

tributed resulted in cunulat~ve probabilities ranging from 5 to 90 percent. 

The lo~nornal approxination was therefore considered accectable since the 

Chi-square probabi 1 ities were less than 90 percent fnr a1 l 28 internal load 



f I 
; quantities. The Chi-square hypothesis is usually accepted for cumulative 

probabilities as high as 99 percent. The coefficients of variation f ~ r  

.-. i these load quantities varied between 0.2 and 0.4. 

The extrenal type I distribution, defined by Equaticns (6) through (15). 
is the theoretically rroper distribution for limit loads due to any con- 

dition having an exponential-type underlying probability distribution and 

a sufficiently large number of independent load occurrences. For the 

exponentisl distri5ution,convergence to the asyn~totic extremal tyDe I 

distribution is essentially complete for 100 observations (~eference 1,  

page 116). For the norm1 distribution, however, convergence to the 

asynptotic type I distribution is extremely slow. According to Fisher and 

Tippett (Reference 5, page 189), close convergence is attained only for 
5 5 sample sizes on the order of 10 . Such large samples correspond to 

characteristic largest values of the standardized normal variate on the 

order of 16. 

i Accurately describing extreme values from an underlying normal distribution 

I is necessary due to the'central role of the normal distribution in engineer- 

ing applications. The theoretical distribution of extreme largest values 

from variously sized samples of standardized normal variates was tabulated 

by K. Pearson in Reierence 2 (page 162). Plots of these tabulated values 
rP on lognormal probability paper indicate that, for certain sample sizes, the 

theoretical distribution of normal extremes can be adequately approxirated 

by rne lognormal  roba ability distribution. In fact, the theoretical dis- 

tribution plots essentially as a straight line on lognornal probability 
Ir 

paper for standardized characteristic largest values (tn) sf approximately 
ij 2.16. This value of Gn corresponds to a sample size (n) of  approximately 65. 

The lognormal PDF nay be written for the normal extreme variate (x) as 

follows: 

f (x) = 
1 1 linx- -( 2 ex3 - - ( -' 
6 Ex 2 Q '  

where -i is the mean of Lnx and 

E is the standard deviaticn of Lnx. 



The parameters y and 6 used for the lognormal approximation are obtained 

in terms of the staadardized extrene nedian (i) and standardized extrece 
mode (2) by means of the following identities: 

( 1 )  The mean of fnx i s  the logarithm of the median of x ;  

(2) The variance of  2nx is the logarithm of the ratio of 

median of x to the vode of x (Reference 1, page 18). 

Let the underlying normal distribution of interest have mean P and standard 

deviation c. The required lognormal paraneters are then giveel by 

u 
7he median (x) of the standardized n~rnal extreme for n samples is defined 

the following equation: 

Combining Eouations (2) and (1:' to elininate n gives the following desired 
'J 

equation for the standardized extrene nedian (x) in terns o f  the standardized 

characteristic largest value (cn) : 

where F i s  the normal CDF. 

The mode (2) of the stant ardized normal extrece for n samples i s  defined by 

Gumbel (Reference 1 ,  pagc 133) in terms of the following equation. 

where F i s  the norm) CDF, and 

f i s  the normal PDF. 

Combining Equations (2) and (21) to eliminate n gives the following desired 
% 

equation for the standardized extreme mode ( x )  in terms of the standardized 

characteristic largest value (in): 



The lognormal app rox im t ion  t o  the distribution o f  norm1 extremes i s  

def ined by Equations (16) through (22) . 'his representat i on  may be 

considered adequate f o r  values o f  the  standardized cha rac te r i s t i c  la rses t  

value (cn) less than 3. 

A second a p p r o x i m t i c n  t o  the d i s t r i b u t i o n  o f  normal extremes was proposed 

by Fisher and T ippe t t  (Reference 4 ) .  The proposed CDF i s  o f  the form 

This general form i s  denoted by Gunbel (4eference 1, page 298) as the 

t h i r d  asynptot ic  d i s t r i b u t i o n  o f  ex t re re  values o r  the extremal type i l l  

d i s t r i b u t i o n .  By i nve r t i ng  Equatisn (231,  a p p r o x i ~ a t e  percentage points 

f o r  extremes o f  the standardized ~ o r r a l  v a r i a t e  are  obtained as fo l lows 

i n  terms o f  the cumulative p r o b a b i l i t y ,  - p: - 

A specia l  c h a r a c t e r i s t i c  o f  t h i s  e x t r e r a l  tyDe i l l  d i s t r i b u t i o n  i s  tha t  i t  

converges f o r  increasing values o f  the parameter k tovrard the extremal type 

I d i s t r i b u t i o n .  Thus, i n  p rac t ice ,  the extremal type I l l  d i s t r i b u t i o n  may 

be used t o  represent normal extremes f o r  a1 1 values o f  Gn greater  than 3. 

For very la rge values o f  in. the e x t r e w l  type I d i s t r i b u t i o n ,  r h i c h  i s  the 

theo re t i ca l  asymptotic d i s t r i b u t i o n  o f  nornal extremes, m y  be used. For the 

ncrmal standardized v a r i a t e  (y) ,  the type I d i s t r i b u t i o n  func t ion  i s  

where 



This expression for the standardized normal extremal intensity function i s  

derived by Gumbel (Reference 1, page 137). The type I extreme value dis- 

tribution may be used, if desired, to describe normal extremes for 

standardized characteristic largest values exceeding 8. 





where S is the value of the random strength corresponding ro a A 
specified exceedance orobab i 1 i ty (PA). and 

L is the value of the random limit load corresponding to 
D 
a spec i f i ced non-exceedance probabi 1 i ty (pD) . 

The purpose of the factor of cafety in the structural design procedure is 

to locate the strength PDF +lative to the given limit-load PDF so that 

Equation ( 29 )  or (30) results in the required cosponent probabil i ty of 

failure. This concept is illustrated in Figure 2.2-1. for most probability 

distributions, the integral of Equation (29) or (30) must be evaluated 

numerically and the required factor of safety determined by trial-and-error 

procedures. However. for certain specific distributions, closed-form evalua- 

tions leading to convenient design formulas are possible. 

A particularly convenient dzsign factor-of-safety equation occurs when both 

1 imi t loads and strengths are assumed to fol low the !ognormal probabi 1 i ty law. 

As discussed in Section 2.1, the lognormal distribution often accurately 

represents the theoretically proper distribution for limit loads. Moreover, 

for much existing strength data, the lognorral distribution also is a 

satisfactory representation, due perhaps to the deletion of low-strength 

values by quality-control procedures. 

The component factor-of-safety expression for lognormal limit loads and 

strengths is derived in Reference 3 in the following form: 

where v is the kng-kmin coefficient of uncertainty, 

P is the probability of failure or acceptable risk, F 
P is the non-exceedance probabi 1 i ty for design 1 imi t load (L~), D 
P i s  tk exceedance probability for alfowabJe stress ( s ~ ) ,  

A 





, , . + 
V L and V S are limit-load and strength coefficients of variation, 

! - 1 F (P) is the inverse of the standardized normal cumulative 

distribution function gi\.en by 

TKe numerical behavior of the lognornal/tognornal factor of safety is shown 

graphically in Figure 2.2-2. For this plot, the defining probabilities for 

design linit load and allowable strength are both taken as 99 percent, and 
the coefficient of uncertainty is taken as unity. The factor of safety i s  

seen to increase monotonically with decreasing srobability of failure for 

given load and strength coefficients of variation. 

From Equation (321, the component factor of safety corresponding to a 

specified probability of failure ray be computed. The allowable strength 

is then determine?, from Equation (31) ,  as the product of the factor of 

safety times the design.lirnit load. Additional details regarding the 

application of this probabilistic design approach are presented in Ref- 

erence 3. Procedures for determining the basic limit-load prcbability 

distributions fron which the specific design linit load is selected are 

discussed in the following section. 





3.0 METHODOLOGY DEVELOPMENT 

Structural dynamic analyses resulting in design limit loads may be performed 

either in the time domain or in the frequency domain. The Taylor's series 

method and the Monte Carlo method are two widely used techniques for determining 

limit loads frorn time-domain analyses. The Taylor's series method, described 

in Section 3.1, is an extension of the parameter variation study often performed 

to evaluate sensitivity to parametric data uncertainties. The Monte Carlo 

method, described in Section 3.2, is a simulation of the loading condition 

using a random combination of vehicle parameters and environments. For each 

load quantity of interest, the maximum val.~e occurring in each simulated 

mission is identified and recorded. The maximum load data from a number of 

simulated missions approximates the desired extreme-value limit-load 

distribution. 

In Section 3.3, a new method is presented for determining the extreme-value 

limit-load distribution from a frequency-domain analysis. This method 

determines the probability distribution of the extreme largest load value, 

for a stationary Gaussian random process, occurring within a given mission 

length. 



I ', 
3.1 Limit Loads from Taylor's Series Analyses 

A detailed discussion of the use of the Taylor's series method to estimate 

limit-load probability distributions for aerospace launch vehicles is 

presented by Lovingood (Reference 7). This appl ication involves first 

analytically simulating the structural loads and responses encountered by a 

nominal launch vehicle flying through a moderately severe synthetic wind 

profile. The resulting loads are considered to be the nominal or mean 

values for the limit loaa probability distribution. The peak or design 

limit load values, which are defined as the "3-0" values having non-exceedance 

probabilities of 0.9387, are next obtained by compiiting the variations in 

load due to 3-c variations in the significant vehicle parameters, taking 

the root-sum-square variations of each load quantity, and adding these to 

the corresponding mean values. 

This method is useful for efficiently predicting preliminary and interim 

structural design loads. However it has the disadvantage of requiring a 

synthetic wind profile defined sbch that the mean values of all the limit 

loads of interest are produced by the analytical simulations. Besides the 

difficulty of defining this proper synthetic environment, the Taylor's 

series method is based on three fundar:iental assumptions which may not be 

valid for particular applications. These assumptions will be discussed in 

t ~ e  brief derivation which follows. A similar derivation in Reference 7 is 
somewhat more detailed. 

The disttibution of a nonlinear function of several random variables may be 

obtained by approxinating the desired function as a linear function in the 

region of interest. The mean and standard deviation of a linear function 

of several independent random variables are knom from elementary probabi l i ty 

theory (Reference 8, page 48) . I f XI , X2, . . . , X are independent random 

variables having means m " 2 2  m2, ..., m and variances s, , s2 , ..., s 2 
n n ' 

respectively, and if al, a2, ..., a are constants, then a linear random n 
function Gay be defined as follows: 



The mean of f is 

Thus the mean of a linear combination of random variables is equal to the 

linear combination of the e n s .  This result i s  valid even if the X's are 

dependent. 

The variance of f is 

Thus the variance of a linear con3bination of independent random variables 

I 
is equal to the sum of the products of variances and squared constants. In 

addition, i f  the X's are normally distributed, then f is also normally 

distributed with mean mf and variance s 2 f 

A nonlineas-function m y  be expanded in a Taylor's series about any given 

point as fol lows (Reference 8, page 62) : 

I I f  the higher order terms are negligible, the mean of f is, according 
I 1 . I  

to Equation (35), approximately equal to: 

i 

i 



If, in addition, the X's are independent, the variance of f i s ,  according 

to Equation (36) , approximately equal to 

Futhermre, if the X's are normally distributed, f is approxirately normally 

distributed. If the X's are normally distributed and if the function is 

1 
1 inear so that Equation. (37) contains no higher order terms, then the mean 
and variance are exactly as given by Equations (38) and (39) and the 

theoretical distribution of the function is the normal distribution (Refer- 

ence 9, page 90) . 

The three assumptions in the use of the Taylor's series method are as 

follows: 

(1) that the higher-order terns in the Taylor expansion are negl igible 

compared with the first-order terms, 

(2) that the X's are indzpendent, and 

(3) that the X ' s  are normally ~istributed. 

The accuracy of design 1 imit loa2s determined by the Taylor's series method 

depends in part upon how well the pa-titular physical simulation is 
! represented by these three assumptions. In Section 4.1, a discussion of I 

i 

! 



1 

the effects of these assum~tions is presented along with  nmerical 

demonstrations of the method. So long as the potential disadvantages 

of this method are recognized, it remains an efficient ~ n d  usefui tosl 

for estimating preliminary and interim design limit loads. 



i 

\ 
3.2 Limit Loads from Honte Carlo Simulations 

The Monte Carlo method is a powerful and general tool for predicting 

structurai design loads. The method has been gaining wider acceptance for 

dynamic load studies of aerospace vehiclos (References 4, 10, 11. 12). For 

this application, the method consists essentially of simulating a random 

loading phenomenon by combining deterministic and probabilistic variables. 

The limit-load prohability distribution for each load quantity is then the 

distribution of the largest loads occurring in each sinulated mission. For 

the launch vehicle load sirnul~tions described in Reference 10, the detemin- 

istic variables included such vehicle parameters as mass and geometry, 

structural dynamic characteristics, propellant slosh parameters, and control- 

system parameters. The probabilistic variables for this study were restricted 

to descriptions of the ~ i n d  environment. The wind was represented both by 

detai led nieasured wind prof i tes including turbulence and by f i 1 tered measured 

wind profiles with the turbulence considered separately usicg power spectral 

density (PSD) methods. 

In general, probabilistic variables may include any factors not determin- 

istically known, including initial conditions, propulsion characteristics, 

alignment tolerances, and mass properties. For time-domain simulations, 

sample values of individual rando.. variables rt4ay be generated using digital 

random number generators such as those described in References 13 and 14. 

Sample time histories of random processes such as wind turbulence can be 

generated from PSD data using the technique described in Reference i 5 .  Of 

course, actual sample values or sample time histories from test data may be 

used directl\ as the random inputs to a Honte Carlo time-domain simulation. 

A major considt-r-tion in the general application of the Monte Carlo method 

is to reduce the required cost of simulation as much as possible. In 

Reference 16 (page 146), H. Kahn describes several such techniques. Two 

of these (Russian Roulette and Use of Expected Values) have becn used 

successfully in structural toad analyses. Russian Roulette involves 



concentrating the computational effort on cases of special interest. For a 

landing dynamics analysis, the cases of interest may be those having the 

largest initial kinetic energy which therefore result in the largest structural 

loads. For a flight loads analysis, the cases of interest may be those 

having the wind profiles resulting in largest loads; the critical profiles 

are identified using very greatly simplified flight simulations. These cases 

identified as being of special interest are then analyzed using the more 

detailed simulation methods. The Use of Expected Values is merely a separation 

of computational tasks into whet can be efficiently calculated analytically 

and what must be simulated by Monte Cario methods. An exanple of this 

technique is the separation of the wind profile into small-scale turbulence 

(efficient I y treated by PSD methods) and large-scale variations as described 

in Reference 10. 

Another technique which may be used successfully for determining probabilistic 

design limit loads is the statistical estimation method. As an extension of 

the norm1 confidence limit concept, this method is based on the generally 

valid representation of random limit loads by the lognormal probability law. 

The expression of the one-sided normal confidence limit as derived in Reference 

4 i s  val id for Monte Carlo samples of 50 or more observations. This expression. 

can be simply modified as follows to be valid for samples as small as 20 

observations. 

Let yl, y2, . . . , y be n independent observations of a norrral random variable 
n 

wi th  mean m and standard deviation s The unbiased estipiates of the sample 
Y Y' 

mean and variance, which are stochastically independent, are given by 



I 
$ 

According t o  V i  l ks (Reference 17, page 208), the sample mean (n*) Y i s  normal 1 y 

d i s t r i b u t e d  w i t h  mean (m ) and standard dev ia t ion  (s /n) and the sample 
Y Y 

variance i s  d i s t r i b u t e d  as fo l lows 

R 2 C - Fn-, (42) 

2 
The Chi-square d i s t r i b u t i o n  w i t h  k degrees o f  freedom (Xk) i s  approximately 

normal f o r  la rge k (Reference 17, page 189). However, a much more rap id l y  

converging a p p r c x i m t  ion  i s  given by Bov~ker and Lieberman (Reference 8, 

page 556) : 

The c lose convergence o f  t h i s  approximation f o r  20 degrees o f  freedom i s  

shown i n  Figure 3.2-1. Combining Equations (42) and (43) resu l t s  i n  the 

fo l l ow ing  approximate d i s t r i b u t i o n  f o r  the sanple standard dev ia t ion  f o r  n 

as small as 20: 

Define the t rue  a x 100 pe rcen t i l e  load by 

f 
where - 
The s t a t i s t i c a l  est imate o f  Fa i s  





' A  

From Equations (35) , ( 3 6 ) ,  and (44) , the mean and variance of F are 

i; z (4- 1) 

The one-sided confidence limit equation is 

Equation (49) implies that 
A 3  

Substituting Equations {45), (47), and (48) into Equation (50) and solving 

for the appropriste root of K yields 

where 

Equation (51) may be used with Equation (46) tc determine the one-sided 
confidence l imi t for any probabi l i ty level (u) and conf idance level (8) 

so long as the sample size (n) is at least 20. 



The statistical estimation method for Jse i l l  estimating the limit load 

probability distribution from at least 20 unbiased Monte Carlo observations 

is described as follows for each load qu~ntity of interest: 

( 1 )  Calculate the sample mean and standard deviation of the natural 

logarithms of the observed lozds using Equations (40) ar ' (41). 

(2) Calculate the one-sided confidence limits for several different 

probability leqels (a) for a given confidence level (a) using Equations 

(46) and (51) 

(3) Solve for the mean and standard deviation of the logarithms which provide 

the least-squares fit to the following equations: 

(4) Convert mv(?) and s v (5) to lognormal mean mx(6) and coefficient of 

variation V ( E )  using the following standard expressions , X - - 
v, (8) = [ e x ,  (sy(9jL) I - q 2  (52) 

Vox ((3) = 11 * V, ($)&Ii ex,? [il/j (53) 

Equations (52) and (53) are consistent with the following notation: 

Y =  YhX 
I 

where Vx - S ~ / M X )  



t 

This statistic.31 estimati~n method provides conservative estimates of the 

lognormal parameters of limit loads determined from at least 20 Monte Car10 

simulations. The degree of conservatism in the estimated parameters is. 

of course, dependect on the confidence level (fi) chosen. The estimated 

parametric values are also somewhat dependent on the particular probability 

levels (li) chosen for the least-squares fit. A numerical demonstration 

of this rethod is presented in Section 4.2. 



3:3 Limit Loads from Frequency - Domain Simulation , 

In the practical solution of random vibration problems, the dynamic char- 

acteristics of a structural system are usually assumed to be linear and 

deterministic, and the excitation is assumed to be random. Furthermore, 

the random excitation i s  usually assumed to be stationary and Gaussian 

with zero mean value, since the random process for the response can then 

be completely characterized by its power spectral density function (~eference 

9, page 89). Solutions to two random vibration problems for this special 

case of stat iqnary Gaussian response are available in the 1 i terature (Ref- 

erence 18, page 293) . The threshold-cross ing problem is concerned with the 

expected rate at which a random process ~ ( t )  exceeds a certain value. The 

peak-distribution problem is concerned both with the probability distribu- 

t ion of peak magnitudes in ~ ( t )  and with the expected rate of occurrence of 

the peaks. However, neither of these available solutions provides the 

extreme-value probability distribution required for probabilistic ultinate 

strength design. The objective of the present study is to determine the 

probability distribution of the extreme largest value, for a stationary 

Gaussian random process ~ ( t )  , occurring within a given mission length. This 

required limit-load probability distribution will be expressed i n  terms of 

the power spectral density function (PSD) of the calculated load. 

* - 
The real autocorrelation function associated with a real-valued stationary 

random process ~ ( t )  may be defined by 

Equations retating the autocorrelation function and the power spectral 

density fu~ction (PSD) are known as the Wiener-Khintchine relations ( ~ e f -  

erence 19, page 579). For a real-valued random process, such as the random 

load in 3 structural nember, the defining equations may be written 



G h) = [ R COSUT d~ 
7! 

I 
I 

where G ~ U )  is the load PSD with frequency (J) in radians/second. 
E 

1 
The load PSD m y  alternatively be written with frequency in Hz as i o i l o ~ ~ s  I - 

where f = w / 2 ~  in Hz. 

r : For some applications, the load PSD may be more conveniently defined in 
terms o f  spatial frequency (radians per unit distance) and spatial distance 

instead o f  circular frequency (radians per second) and time. Equations (55) 
and (56) with appropriate notation changes may be used as the defining 

Wiener-Khintchine relations for such applications. . - 

With n o  loss o i  generality, a stationary random process may be assigned a 

zero mean value. The variance of such a real-valued random process is 

obtained f rom Equations (55) and (57) by evaluating the autocorretat ion 

function for zero time lag, 

Equations (54) through (59) form a consistent set o f  definitions for use i n  

harmonic analysis o f  stationary random processes. Since many authors use 

a1 ternate forms o f  the Wiener-Khintchine relations (~eference 19, page 580). 

special care is required when applying fornulas for random vviration analysis. 



Standard methods are available for computing the PSD of loads in a linear 

structure due to stationary Gaussian excitation (~eferences 18, 20, 21). 

The output response PSD for the rth calculated load quantity is given by 
- -. 

the follcwing general equation: 

where {L. (jw)) is the column matrix of complex frequency responses 
I r 

for the rth load quantity and for i excitation points, 

L )  is a row matrix of the complex conjugates of Lir(jo), 

and 

IGf(jw)] is the PSD matrix of input power spectral density 

functions for each of the i excitation points and cross- 

power spectral densities between the excitation points. 

The following development converts the Gaussian load PSD typically defined by 

Equation (60) intc an extreme-value limit-load probability distribution 

required for probabilistic structural design. 

The critical parameter in the three distributions used for describing 

extreme normal variates is the characteristic largest value (u). Its 

magnitude increases with sample size until, as n becomes very large, it con- 

verges to the most probable value (mode) of the asymptotic extrecal type I 

distribution (~eference 1, page 172). However, as described in Section 2 . 1 ,  

the convergence of the normal extremes to the type I distribution is so slow 

that the lognormal and extrenal type I11 distributions must be used for small 

and moderately sized samples. The following development i s  based on expres- 

sing the characteristic largest value in terms of Rice's theorem for the 

expected number of threshold crossings per unit time. 

According to Rice (~eference 22 ,  page 192),  the expected rate of zero 

crossings from below for a stationary Gaussian process with zero mean is 

given by 



With the PSD def ined i n  radians per second (or radians per u n i t  distance), 

With ihe  random s t r u c t u r a l  load PSD def ined by Equation (60) the i n teg ra l s  

o f  Equations (61) arid (62) w i l l  converge whenever the input PSD has a f i n i t e  

variance. 

The equation f o r  the expected number o f  times per u n i t  t ime o r  distance tha t  

the  Gaussian load passes through the threshold value ( 6 )  w i t h  p o s i t i v e  slcpe 

i s  given by Rice (~e fe rence  22, page 192) as fo l lows:  

2 
EIN+(E)] = EIN+(o)J exp ( 2 ) 

2u 
2 

where E[N+(o)]  i s  def ined by Eauation (61) o r  (62) and 

u2 i s  def ined by Eauat io; (59) . 
Equation ( 6 3 )  nay a l so  be found i n  Reference ,8(oage 2971, Reference 2, !page 

42), and Reference 23 (page 5.121) among riany other  sources. I t  i s  r e s t r i c t e d  

t o  s ta t i ona ry  Gaussian random processes having zero mean values. Since the 

Gaussian codel i s  cornonly used t o  represent i n f l i g h t  a rmos~her ic  tarbulence 

(~e fe rence  23, page 5.116) and t ransonic b u f f e t i n g  (~e fe rence  20j ,  t h i s  

r e s t r i c t i o n  i s  not  s i g n i f i c a n t  t o  most cur ren t  ensineering apo l ica t ions .  

The expected number of threshold crossings i n  a given time o r  dir.acce 

i n t e r v a l  CT) i; obtained simpiy by modifying Equation (63) as fo l lows:  

where T def ines the length o f  a missian. 

The desi red cha rac te r i s t i c  la rges t  value i n  a sample o f  s ize  n, u , i s  

def ined as fo l lows by G u ~ b e l  (7eference 1, z a p  82): " In n observations, 

the expected nurber o f  values equal t o  o r  l a r se r  than u i s  uni ty . "  Thus, 

by d e f i n i t i o n .  the c h a r a c t e r i s t i c  la rges t  value f o r  a mission o f  length T 



- .  
.' I . is determined from Equation (64) by setting the expected number of threshold 

1 .  
crossings to unity. The required characteristic largest value for the stand- 

I 

ardized normal variate is then 

where a is defined by Equation (59) and 

E[tl+(O)] i s  defined by either of Equations (61) or ( 6 2 ) .  
This characteristic largest value for a stationary Gaussian random process 

having zero cean is sufficient to completely define any of the three dis- 

tributions used for normal extremes. 

As discussed in Section 2.1, the convergence of norr,:al extremes to the type 

I asymptotic extreme-value distributicn is extremely slow. fhk type I dis- 
tribution is therefore recommended for describing normal extrenes only when 

the characteristic largest value for the standardized variate exceeds 8. The 

extremal intensity iunct ion (2) correspond ir;g to the standardized character- 
istic largest value (;) is given by Gumbel (~eference 1 ,  pase 137) as fol lor-1s 

for normal extrenes: 

The extrenal type I cunulative distribution function for the standardized 

variate (y) is given by 

where C and 6 are defined by Equations (65) znd (27) ,  respectively. 

The extrenal type I l l  distribution, which converges to the type I distribu- ,. 
tion with increasing u, is recommended for characteristic largest values 

between 3 and 8 for the standardized nornal variate. She type I I I distribu- 

tion function for normal extrenes was first suagested by Fisher and Tippett 

(Reference 4 ) .  A suitable form of this distribution for the standardized 

variate is 



where k = 
(i2+112 

(C2- 1) 
The percentage points of this distribution as a function of the cumulative 

probabi 1 i ty, p, are given by GurbeI (Reference 1 ,  page 299) as 

x - ~n(- no) 
Y = - =  

G expkn u - k 1 (25) 

As discussed in Section 2.1, for characteristic largest values of the 

standardized normal extrerxes close to 2, the lognorral distribution is 

essentially identical to the actual distribution of normal extremes cal- 

culate: by Tippett an2 plotted in Reference 1 (page 129). For values less 

than 3, the lo~nor~a1 a~proximation i s  generally more accurate than the 

extrenal type I l l  a~proximation and is therefore recommended for this range. 

The lognornal probability density function is 

1 f (x) = - 1 enx-u 2 
exp- - f - ) 

& 6x 2 3 

d 
x i s  the nedian of the standardized norral extrece, and 
'b 
x is the mole of the standarfized norma! extrene. 

cl 
The required median (x) of the standardized norral extrene is obtained frcv 

the following equation: 

* 
where F ( G )  is the norm1 cumulative distribution function evaluated at u. 

Equation (20) is a mdified fcrn of the equation for medians of extrene values 

given by Gunbel (Reference 1 ,  page 79). The Gaussian probability functions 

are tabulated, for exar.ple. in Reference 8 (page 555) and Reference 2 4  

(page 33) .  

Z 
The required node (x) of the standardized norm1 extrerne is obtained from the 

foilwing equation: 



Equation (22) is a modified form of the equation fcr nodes of normal extrenes 

given by Gumbei (Reference 1 , page 133) . Tabu1 a ted rra lues of F (x)/f (x) 

may be found in Reference 2 (page IT). 



4.0 'NUMERICAL DEMOKSTRATION 

The methods previously described for determining limit-load probability 

distributions from time-domain and frequency-domain analyses have certain 

limitations which may be best illustrated by numerical exacples. Scition 

4.1 presents three numerical examples of the Taylor's ser:es method which 

demonstrate the effects of the method's fundamental assumpt:ons. Section 

4.2 demnstrates the statistical estimation method which may be used to 

reduce the required nunber of Monte Carlo simulations. These numerical 

examples are based on sets of random numbers generated by a digital co~puter. 

The method for determining limit loads from a frequency-d-in analysis is 

demonstrated using numerical data obtained from an analog Gaussian noise 

generator. Section 4.3 presents the results of three examples of chis 
method. 



4.1 Examples of Tayior's Series Method 

As discussed in Section 3.1, the Taylor's series method for estimating the 

probability distribution of a nonlinear function of several random variables 

i s  based on the following three assumptions: 

( I )  that the higher-order terms in the Taylor wpansion.of the function 

are negi igi ble compared with the first order terms, 

(2) that the individual random variables are mutual ly independent. and 

(3) that the individual random variables are each normally distributed. 

The followiris is a brief discussion of the inplications of these assumptions 

with numerical examples. 

Consider a function of four random variables 

where 

By the Taylor's series method, the estimates of the mean, variance, and 

standard deviation of the function are as follo~~s: 



The stochastic behavior of this function was studied for three different 

cases. Case 1 involved dependent variables fpw = -0.5) a ~ d  a non-normal 

variable with the variable X being uniformly distributed in the range 1 

to 3. Case 2 involved a non-normal variable ( X  % U ((1,3)) but all variables 

were independent, Case 3 involved ali normai and independent variables. 

The mean and standard deviation and the cumulative distribution function 

(CDF) were determined from 2 Monte Carlo simulation using a sample size of 

2000 for each of the three casss. The Monte Carlo simulations were performed 

with the Boeing Generalized Statistics Program (GESP) de~ciilrd i~ References 

13 and 14. The resulting means and standard deviations are pre~ented in 

Table 4.1-1 for comparison with the Taylor's series estimates. Results of 

significance tests of the hypothesis that the Monte Carlo parameters are 

identical to the Taylor's series parameters are also presented in Table 

4.1-1 along with the results of a Chi-square test for normality (Reference 

8, page 366). The hypothesis test for the mean was performed using Student's 

t statistic (Reference 8, page 127). The hypothesis test for the standard 

deviation was performed using the Chi-square statistic (Reference 8, page 138). 

The acceptance probabilities for such hypothesis tests are usually established 

at either c ; . ~  percent or five percent levels. Values of thc 37-degree-of- 

freed-w Chi-square statistic corresponding to these probability levels are 

59 and 52, respectively. 

For this particular function, the Monte Carlo means and standard deviations 

are seen to approach the Taylor's series parameters as the assumptions of 

independence and normality of the individual variables are better satisfied. 

The hypothesis tests indicate that the mean determined by the Taylor's series 

method is sufficiently accurate regardless of normality and independence of 



Table 4.1-1 Nurner:ca; Evaluation of Taylor's Series Method 

Me t hod 
mf 

Taylor's series 

Honte Carlo 

Case 1 

Honte Carlo 

Case 2 

Monte Carlo 

Case 3 

Sf 

400.0 

409.4 

PfYm > mfl PtYS > s f ]  
2 

"7 

154.4 - 

133.3 405.9 

0.008 

172.3 I 

- 

402.8 

159.0 

.. 

0 

2oo-1 I 
156.8 

0.049 0.028 

0.210 0.164 127.6 

- 1 



I 
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the individual random variables; the standard deviation determined by the 
I 

Taylor's series method is sufficiently accurate only when the individual 

random variables are independent. Hoidever, for none of the three cases 

was the hypothesis of normality verified by the Chi-sqlrare test. I n  Figure 

4.1-1, the c~~mulative distribution function determined from the Ilonte Carlo 
simulation for Case 3 is plotted versus the Taylar's series normal distribution 

to illustrate the results of the Chi-square test. 

These nunerical examples are consistent with the theory discussed in 

Section 3.1. An accurate estimate of the mean requires only that the 

higher-order terms in the Taylor's series expansion are negligible, whereas 

an accurate estimate of the variance requires the additional assumption of 

independence among the individual random variables. A l i  three assumptions 

must be sati;Cied in order that the function be approximately normally 

distributed. For the function studied, the second and higher partial 

derivatives are negligikle or zero except with respect to the Y variable. 

The numerical influence of the neglected non-zero terms on the Taylor's 

series estimate of the mean and standard deviation appears to be small. 





4.2 Examples of Monte Carlo Method 

As described in Section 3.2, the statistical estimation metkJ is a technique 

for conservatively estimating the lognorrrtal limit-load parameters from a 

small sample of observed loads from a Monte Carlo simulation. The numerical 

demonstration of this method is based on a simulated analysis in which the 

limit load is defined as the largest load occurring in 100 independent 

observations of a standardized normal variate. By means of the GESP random 

number generator (References 13 and 14), 2000 simulated 1 imit loads were 

generated. The limit-load distribution was apprcximately lognorma1 
2 

(PiXJ7 491 = 0.095) with mean equal to 2.509 and coefficient of variation 

equal to 0.1715. Ten data sets of 20 values each were statistically analyzed 

to determine the sample mean of the logarithms (ma) and the standard deviation 
Y 

of the logarithms (sL) . The best-f i t mean m (5) and s tandsrd deviation s (2) 
Y Y Y 

of the logarithms were then conservatively estimated using the 90% one-sided 

confidence limit  quati ti on 51) for two sets of probability lev-1s. The 

probability levels designated confidence fit "a" were biased to positive values: 

Ka = 1, 2, 3, 4, 5. The probability levels designated confidence fit "bl' 

were unbiased: Ka = -4, -3, -2, - 1 ,  0, 1, 2, 3, 4, 5. The sample data and 

the conservative estimates for confidence fits "a" and "1" are presented in 

lables 4.2-1 and 4.2-2, respectively. For comparison purposes, the "true" 

sample mean and standard dr.~iat ion of the logari thrns based on 2000 values 

are m = 0.505 and 5 = 0.1703. 
Y Y 

The data presented in Tables 4.2-1 and 4.2-2 are plotted on normal probability 

paper in Figures 4.2-1 through 4.2-10. Each plot shows, for each data set, 

the conservatively estimated distributions based on 20 values along with the 

"true" distribution based on 2000 values. Both conservative distributions 

result in values larger that the "true" values for the probability rangc of 

interest. Values from the biased confidence fit "a" suggest that nost of 

the conservatism is in the estimate of the standard deviation. Values from , 
the unbiased confidence fit "b" show a more balanced approximation to the 

"true" distribution. 



i 
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Table 4.2-1 Parameters for Statistical Estimation 

Demonstration Using 90% Confidence Fit "a" 



I 
Table 4-2-2 parameters for S t a t i s t i c a l  E~~ iMt 

Demonstrat ion US ing 90% Canf idence ~ j t  ub" 

I 
Y 

Data Set 1 m-• 

2 -- 

3 
4 

5 
6 

7 

- 
0.973 0.1907 -- 
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1.0 
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4 6  

/' 
- 7rwa distribution from 2000 valusr 

0.4 --- Estimated distribution fram 20 values 
using 905% cdnfidcncd tit "a" 

- .  Estimated distribution from 20 vidu0l 
0 3  wing 90% conlidonee fit "b" 

Figure 4.2- 10. Example of Statistical Estinlation Method - i * ~ t a  Set 10 



4.3 Examples o f  Frequency - Donain Method 
Numerical ly demonstrating the method f o r  determining t i le l i m i t - l o a d  

p r o b a b i l i t y  d i s t r i b u t i o n  from the power spectra l  dens i ty  f unc t i on  (PsD) 

of  a Gaussian ranCom process has tho general aspects. The f i r s t  i s  

demonstrating tha t  the  extreme values from a continuous Gaussian t ime 

ser ies  o f  spec i f ied  du ra t i on  behave mathematical ly as extremes from a 

populat ioa of d i s c r e t e  normal var iates.  The second i s  demonstrating that  

the  l o g ~ o r m a l  and extremal type I11 d i s t r i b u t i o n s  provide v a l i d  repre- 

sentat ions o f  the ac tua l  d i s t r i b u t i o n  o f  extremes when based on the  fo l low- 

ing expressio? f o r  the  standardized c h a r a c t e r i s t i c  largest  value derived 

i n  Section 3.3: 

Both o f  these aspects wi 11 be demonstrated using n u n e r k a l  data obtained 

from an anaiocj Gaussian noise generator. 

The Elgenco !<ode1 31 1A Gaussian l lo ise Generator was used t o  ob ta in  the 

required random t ime h i s to r i es .  Th is  e lec t ron i c  device provides a stable 

and re1  i ab le  source o f  Gaussian random noise having the fo l l ow ing  

cha rac te r i s t i cs :  

(I) The output  PSD i s  uni form t o  20.1 dB from 0 to  35 Hz; the output  

f a l l s  o f f  r a p i d l y  above 40 Hz. 

(2) The amp1 i tude probabi 1 i t y  dens i t y  f unc t i on  i s  Gaussian (normal) t o  

less  than f l  percent. 

The output  o f  the Gaussian noise generator was passed through three f i r s t -  

order f i l t e r s ,  a l l  having c u t o f f  frequencies o f  25 Hz. The purpose o f  

t h i s  f i l t e r i n g  bias t o  spec i fy  accurate ly  the  high-frequency r o l l - o f f  so 

tha t  the ac tua l  PSD could be p rec i se l y  defined. The PSD used f o r  the 

numerical da2onstrat ion  i s  def ined as 



2 6 

r i f )  = 
a fc 

(f 2+f = 1 3  f o r  0 < f < 40 - - 
= 0 f o r  f > 40 

where fc = 25 HZ, and 

a2 5 2.785 i s  the magnitude fac tor  determined 

emp i r i ca l l y  from the generated output. 

f i gu re  4.3-1 presents time h i s t o r i e s  o f  the  u n f i l t e r e d  random noise pro- 

duced d i r e c t l y  by the Elgenco Noise Generator and o f  the random noise a f t e r  

i t  was passed through three 25 Hz f i l t e r s .  

To determine the ac tua l  mean and standard dev ia t i on  o f  the generated t ime 

series, a s t a t i s t i c a l  ana lys is  o f  the f i l t e r e d  output time h i s t o r y  was 

performed, based on the assumptions o f  s r g o d i c i t y  and s t a t i o n a r i t y .  A 

twenty-secand dura t ion  o f  the output from the noise generator was sanplcd 

a t  0.02-second in te rva l s  t o  provide 1000 data points. The mean and standard 

dev ia t i on  o f  t h i s  large sample were then computed w i t h  the fo l lowing 

resu l ts :  

13 = -0.229 

o = 6.418 

These s t a t i s t i c a l  estimates were assumed t o  be the t rue  parameters of the 

generated time ser ies  f o r  a I 1  subsequent studies. 

A Chi-square goodness-of-f i t  t e s t  ( ~ e f e r e n c e  8, p. 365) was a l so  performed 

w i t h  the sample o f  1000 data po in ts  t o  v e r i f y  t ha t  the generated output 

was Gaussian. The Chi-square s t a t i s t i c ,  based on a d i v i s i o n  o f  the data 

I n t o  19 c e l l s ,  was 19. Th is  value corresponds t o  a Chi-square cumulative 

p r o b a b i l i t y  of less than 75 percent. Thereforz, t h e  random t ime h i s t o r i e s  

obtained from the noise generator may be j ~ c s t  i f  iabl y considered Gaussian 

w i t h  parametric values as estimated. 



TIME (SECONDS) 

Figure 4.3- 1. Time Histories of Un fikered and Filtered Gaussian Rai~dom Noise 



The magnitude fac to r  o f  2.785 used i n  the  PSD expression defined by 

Equal.ion ( 6 8 )  i s  consistent  r i t h  the e m p i r i c a l l y  determined standard . 

deviat ion. With t h i s  PSD expression, the  expected r a t e  o f  zero crassings 

per second w i t h  p o s i t i v e  slope vus ca lcu la ted  t o  be 12.77. Th is  conpares 

wll w i t h  the observed average o f  13.0 takcn from 26 seconds o f  the generated 

randon t i n e  h is to ry .  

Because the theory deveioped in  Sect ion 3.3 app l ies  o n l y  t o  Gaussian randon 

processes having zero nean values, the DC b ias  o f  -0.229 was subtracted 

fron the generated t ime h i s t o r i e s  f o r  a l l  subsequent numerical comparisons. 
* 

Each desi red extrene-value observat ion was def ined as the  la rges t  p o s i t i v e  

value occur r ing  i n  a spec i f ied  t ime durat ion,  T. The theo re t i ca l  s y m e t r y  

o f  the  Gaussian d i s t r i b u t i o n  was used t o  assure u n i f o r m i t y  o f  the extreme- 

value data. Thus, observations o f  extrenes were taken equa l ly  f r on  the 

p o s i t i v e  and negative peaks, and the absolute values o f  the two data sets 

were combined i n t o  one t o t a l  sample. The p o s i t i v e  and negative data values 

were selected from d i f f e r e n t  sect ions o f  the randon t ime h i s to ry ,  except 

f o r  the  data co r respnd ing  t o  T = 100 seconds. According t o  Gumbel 

(Reference I ,  p. 110), the extreme la rges t  and extreme ma1 l e s t  values are 

asymptot i c a l  1 y independent f o r  la rge  samples. Thus, t he  combining of 

p o s i t i v e  and negative extreme values from the same t ime-history sect ion fo r  

T = 100 seconds i s  bel ieved t o  be j u s t i f i e d  theo re t i ca l l y .  

Ver i fy ing  tha t  observed extrw.e values from a generated time ser ies  behave 

mathematically as normal extremes was accomplished by cmpar ing  observed 

and theo re t i ca l  cunu la t ive  p r o b a b i l i t y  d i s t r i b u t i o n s .  The theo re t i ca l  

p r o b a b i l i t y  d i s t ,  :bution, representing the la rges t  ind iv idua l  i n  samples 

of s i ze  n taken from a standardized no rm1  p o ~ u l a t i o n ,  vas tabulated by 

K. Pearson i n  Reference 2, (page 162). The basic r e l a t i o n  between sample 

s ize (n) and c h a r a c t e r i s t i c  ia rges t  value (u) f o r  a spec i f ied  d i s t r i b u t i o n  

i s  g iven by Gumbel (~e fe rence  1 ,  page 82) by 



The t h e o r e t i c a l  d i s t r i b u t i o n  o f  s tandard ized  normal extremes f o r  200,di;- 

C re te  samples, which corresponds t o  a s tandard ized c h a r a c t e r i s t i c  l a r g e s t  

va l ue  o f  2.5758, was se lec ted  f o r  comparison w i t h  an observed extreme-value 

d i s t r i b u t i o n  obta ined f r o q  t he  generated a ;me ser ies.  From Equat ion (651, 

t h e  va lue  o f  T corresponding t o  t h i s  c h a r a c t e r i s t i c  l a rges t  va l ue  i s  2.161 

seconds f o r  t h e  s p e c i f i e d  PSD. The observed p r o b a b i l i t y  d i s t r i b u t i o n  was 

ob ta i ned  from 200 samples o f  l a r g e s t  va lues o c c u r r i n g  i n  t i n e  i n t e r v a l s  o f  

2.161 seconds from the  generated random t i n e  h i s t o r y .  The 200 va lues r e r e  

m o d i f i e d  t o  e l i m i n a t e  t h e  DC b i a s  and then ranked i n  increa-;*? o rder .  The 

cumula t i ve  probabi  1 i t y  assigned t o  t h e  i t h  observed valuc :!as i/231. 

The comparison between t h e  observed and t h e o r e t i c a l  d i s t i  ..'ions i .  ~ h o ~ r n  

in F igu re  4.3-2. The excel  l e n t  agreemect i s  co r robora ted  L! ' r . >:-rare 

t e s t  o f  t h e  hypothes is  t h a t  t he  observed d i s t r i b u t i o n  i s  i d e n t i c a l  t o  t h e  

t h e o r e t i c a l  d i s t r i b u t i o n  o f  nornal  extremes. The Chi-square s t a t  i s t i c ,  

based on a d i v i s i o n  o f  t h e  data i n t o  20 c e l l s ,  was 22.8. T h i s  va lue 

corresponds t o  a Chi-square cunu la t  i v e  probabi  1 i t y  o f  app rox i tw te i y  80  

percent .  Therefore,  the observed e x t r e x  va lues  obta ined  fro^ ;he generated 

random t i n e  s e r i e s  nay be cons idered as n o r ~ a l  ext renes from a d i s c r e t e  

sample o f  s i z e  n, where n i s  de te rn ined  from Equat ion ( 2) g i ven  t he  

c h a r a c t e r i s t i c  l a r g e s t  value. 

V e r i f y i n g  t h e  accuracy o f  t he  lognormal and e x t r e ~ a l  type I l l  d i s t r i b u t i o n s  

t o  represent  norna l  extremes i n  t e r n s  o f  t h e  s tandard ized c h a r a c t e r i s t i c  

l a r g e s t  va l ue  f r o n  Equat ion (65) was acconpl ished by cozpar ing t he  approx i -  

mat ing  d i s t r i b u t i o n s  w i t h  t he  d i s t r i b u t i o n  o f  observed ext renes fo r  tm 

d i f f e r e n t  t i n e  i n t e r v a l s ,  T. For T = 1.0 second, t he  s tandard ized 

c h a r a c t e r i s t i c  l a r g e s t  va lue  corresponding t o  t he  s p e c i f i e d  PSD i s  2.257. 

T h i s  i s  in  t he  range vihere the lognorpa l  d i s t r i b u t i o n  prov ides s n e a r l y  

p e r f e c t  r ep resen ta t i on  o f  t h e  a c t u a l  d i s t r i b u t i o n  o f  no rna l  extre-es. 

Therefore, the  r equ i r ed  l o g n o r ~ a l  parameters nay be obta ined f r o 2  Equat ions 

(20), (22) ,  ( 6 5 ) .  and (67) of Scct  i o n  3 . 3 .  Thc s ' r a i g t ~ t  1 inc i n  F i gu re  4.3-3 

corresponds t o  .{ = 2.733 and f = 0.193. The lognorra l app rox i r a t  i on  i s  seen 

t o  p rov i de  a ve ry  good rep resen ta t i on  o f  t h e  observed d i s t r i b u t i o n  p l o t t e d  

f rom 500 da ta  po i n t s .  







for T = 100 seconds, the standardized characteristic largest value 

corresponding to the specified PSD is 3.782. This is in the range where 

the extreral type 1 1 1  distribution provides a somewhat better representation 

of the actual distribution of nor~al extremes than the lognormal distri- 

bution. The required extrernal type 1 I I para-eter for the standardized 

variate, obtained frorl Equation (24) of Section 3 . 3 ,  is k = 17.604. The 

corresponding distribution, obtained fron Equation (25) of Section 3.3,  is 

s b r m  in Figure 4.3-4. The lognomal distribution also shown in this 

figure corresponds to -( = 3.213 and 6 = 0.140. The extremal type I I I  is 

seen to provide an adequate representation of the observed distribution plotted 

from 118 data points. The standard deviation for the lognormal approxination, 

which determines the slope of the straight line, is seen to be too large. 

Sinc? the median value is accurate1 y determined for both approxirat ing 

distributions, the characteristic largest value calculated from the Gaussian 

PSD by Equation (65) i s  seen to be the proper value for defining the desired 

extreme-value distribction. 





5.0 CONCLUSIONS AND RECOHENDkTlONS 

The methais for determining limit-load probability distributions from tine- 

doamin and frequency-doriain dynamic loads analyses have Lecn described and 

numerically de.mnstrated. The primary contribccion is obtaining the extreme- 

value probability distributions fron the Gaussian PSD of a frequency-dcrain 

analysis. Another contribution is obtaining cor;srrvativt estimates 3f the 

limit-load probability distributions from a small number of Honte Carlo - 
simulations. 

Recomended areas ior additional research include the following: 

I .  Improve the accuracy of the estimate of the parameter. 5 i n  Equation (67) 

for the lognormal approxination to the distribution of normal extrcries 

when 6 > 3. 

2.  Study the possibility of combining the Monte Carlo technique of  Russian 

Roulette and the statistical estimation nethod to determine pore efficient 

estimates of :he limit-load parameters fron Monte Carlo analyses. 

3 Develop a rnetlvad for obtaining the extreme-value distributions f r m  a 

combination of time-domain and frequency-donlain dynamic loads analyses. 

4. Study methods of accounting for payload mass and stiffness variations 

i n  dynamic loads analyses. 
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