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ABSTRACT

Methods are presented for calculating design limit loads compatible with
probabilistic structural design criteria. The approach is based on the
concept that the desired "limit load," defined as the largest load occurring

in a mission, is a random variable having a specific probability distribution

_which may be determined from extreme-value theory. The "design limit load,"

defined as a partfcu!ar value of this random limit load, is the value
conventionally used in structural design. Methods are presented for deter-
mining the limit load probability distributions from both time-domain and
frequency-domain dynamic‘load simulations. Numeri.al demonstrations of the

methods are also presented.
KEY WORDS

Monte Carlo method
probabilistic loads
probabilistic stiuctural design criteiia
extreme-value theory

structural design loads
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1.0 INTRODUCT i ON

The purpose of this report is to describe and numerically demnnstrate methods
for combining payload parameter variations with the input environment in
probabilistic structural design loads analyses. The design loads resuvlting
irom these methods are compatible with probabilistic structural design criteria.
The approach is based on the concept that the desired ''limit load,' defined

as the largest load occurring in a mission, is a random variable having a
specific probability distribution which may be determined from the extreme-
value theory of probability. The "design limit load," defined as a particular
value of this random limit load, is the value conventionally used in structural

design.

. The scope of this study was limited in three general areas. First, no attempt

was made to include the effects of structural fatigue. The technical theory

is concerned only with structural designs corresponding to the single applica-

tion of an extreme load to an undamaged structure. Second, no attempt was (
made to define rationale for selecting acceptable probabilities of failure %
to be used in the structural design criteria. Third, the technical theory
is concerned only with the preliminary design/redesign/design verification
phases of a project. No attempt was made to address the inverse problem of

operational constraints and decisions.

A discussion of a proven general probabilistic structural design approach
is presented in Section 2.0 along with some basic results of extreme-value
theory which are particularly applicable to structural loads. Section 3.0
presents methods for determining extreme-value limit-load probability
distributions from conventional time-domain and frequency-domain dynamic
loads analyses. HNumerical demonstrations of each of these methods are
presented in Section 4.0. Conclusions from the present research and
recommended a,eas for future research are presented in Section 5.0. A

comprehensive list of references completes this report.
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o 2.0 THEORETICAL BACKGROUND i

1

i

The concept of a randomly varying limit load described by a theoretically
correct p.-obability distribution and the use of a particular value of

this random limit load for structural design purposes are of basic import-
ance in probabilistic structural design criteria. Since the limit load

is conventionally defined as the largest load occurring in a mission,

the probability theory of extreme values is useful in determining the
;heoretically correct limit-load probability distribution. Section 2.1
contains some basic results of extreme-value theory which are particularly
applicable to structural loads. Since the determination of probabilistic
structural loads is meaningful only within the larger context of structural
design, Section 2.2 includes details of the application of probabilistic

load quantities in a general structural design approach.
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2.1 Limit-Load Probability Distributions i

i

The limit load for a structural component is conventionally defined as the
largest load occurring during 2 given mission. The probability that the

compcnent load x is the largest value among n independent observations is
defined by

s (x) = [F(x)]" m

where F(x) is the underlying cumulative distribution function (CDF) for the
load. Thus ¢n(x)‘is, by definition, the cumslative distribytion function

of the limit load for a mission which has n independent occurrences of applied
load. The probability theory of extreme values, as presented by Gumbel
(Reference 1), is concerned with describing the limit-load distribution

funccion (Qn) for various forms of the underlying distribution (F).

Two parameters freguently used in extreme-value theory are the characteristic
largest value and the extremal intensity function. The characteristic
largest value (un) in a sample of n observetions is defined by Gumbel

(Reference 1, page 82) in terms of the following equation:
Flu)=1-1 (2)
n n ‘

vthere F(un) is the underlying CDF evaluated at the characteristic largest value.
Thus, as indicated by Equation (2}, v, is that value of the random variable
which will be equalled or exceeded one time in n observations, on the average.
The extremal intensity function (an) in a sample of n observations is defined
by Gumbel! (Reference 1, page 84) as follows:
flu)
_ o (3)
n l-qun;

where f(un) is the underlying probability density function (PDF) and F(un) is

the underlying CDF, both evaluated at the characteristic largest value. The

inverse of the extremal intensity function, called Mill's ratio, is tabulated

by K. Pearson for the normal distribution (Reference 2, page 11).

) REPRQDUCH%YHY’OS'HS:
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The underlying distribution F{(x) is said to be of the exponential type if
f(x) approaches zero for large [x[ at least as fast as the exoonential

distribution, f(x) = le-xx. For any distribution of the exponcntial tyoe,
Gumbel (Reference 1, page 16F) shows that the CDF for large x is apuiox-

imately equal to

e -an(x-ur)
F(x) =1 -= ' (&)
n
An asymptoti:z distribution of extrere largest values can be cbtained by
substituting Equation (4) into Equation (1) and taking the limit as n
becomes infinite '

(#) e -un(x~un) "
° (x) = 2im |1 - = (5)

N>

Evaluating this }imit by means of the logarithmic series results in the
first asymptotic distribution of extreme largest values, subsecuentiy

called the extremal type | distribution:

' -a_ {x-u_)
¢>(]) (x)} = exp(—e o n ) (6)
The corresponding PDF, which is positively skewed, is given by
) ) o i ~an(x—un)
$77(x) = o expl-z (x-u ) -e : (7)

_The most probable value or mode (mOE of this distribution is equal to the

characteristic largest value:
m o=u_ - ‘ &)

The fifty-percentile value or median (me) is given by

¢n(-2n0.5) = u_ + 0.36651292

e =Y "7 o T (9)
The mean {(m) is
m=u_ +°E (10)
a

where CE = D.57721566 is Euler's constant.



The standard deviation (s) is given by

kil

x

n

S =

(1)

and the coefficient of variation (V = s/m) is

m

Ve —
/B(anun + CE)

(12)

Equations (10) through {12) define parametric values for the extremal tyze
| distribution corresoonding to a single mission. Parametric values for

the largest load occurring in N missions are as follows:

my = m+ (_g 2nles : (13)
Sy =S (1t)
v y (15)

N (1 + '/-é anN-V)

These relations are derived in Reference 3 (page 67). Note that the
standard deviation {s) and the extremal intensity function (xn) for the

extremal type | distribution are theoretically independent of sample size.

According to Gumbel {Reference 1, page 182) the extremal type | distribution
is oftea satisfactorily represented by the lognormal distribution. The
lognormal distribution with coefficient of variation equal to 0.36%4 is
essentially identical to the extremal type | distribution. For ceefficients
of variation between 0.31 and 0.42, the extreral and lognormal distributions
are graphically indistfnguishable. An exanple of the validity of the lcg-
normal approximation to the extremal type | distribution is given in Reference
4. For this analysis, 2B sets of internal lcad guantities were calzulated

as the maximum values experienced in each of 100 sirmulated lunar landings.

A Chi~square test of the hypothesis that the loads were lognormaliy dis-

tributed resulted in cumulative probabilities ranging from & to 90 percent.

‘The lognormal approximation was therefore considered accectable since the

Chi-square probabilities were less than 90 percent for all 2B internal load
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quantities. The Chi-square hypothesis is usually accepted for cumulative
probabilities as high as 99 percent. The coefficients of variation for

these load quantities varied between 0.2 and 0.h.

The extremal type | distribution, defined by Equations (6) through (15),
is the theoretically proper distribution for limit loads due to any con-
dition having an exponential-type underlying probability distribution and
a sufficiently large number of indepencent load occurrences. For the
exponential distribution,convergence to the asymototic extremal type |
distribution is essentially complete for 100 observations {Reference 1,
page 116). For the normal distribution, however, convergence to the
asymptotic type | distribution is extremely slow. According to Fisher and
Tippett {Reference 5, page 189), close convergence is attained only for

10°°.

sample sizes on the order of Such large samples correspond to
characteristic largest values of the standardized normal variate on the

ordér of 16.

Accurately describing extreme values from an underlying normal distribution
is necessary due to the central role of the normal distribution in engineer-
ing applications. The theoretical distribution of extreme largest values
from variously sized samples of standardized normal variates was tabulated
by K. Pearson in Reverence 2 (page 162). Plots of these tabulated values
on lognormal probability paper indicate that, for certain sample sizes, the
theoretical distribution of normal extremes can be adequately approximated
by tne lognormal! probability distribution. In fact; the theoretical dis-
tribution plots essentially as a straight line on lognormal probability
paper for standardized characteristic largest values (Gn) of approximately

2.16. This value of On corresponds to a sample size {n) of approximately 65.

The lognormal PDF may be written for the normal extreme variate (x) as

follows:

-2 :
F) = ——exp - 3 (20XT) (16)
V21 éx

where v is the mean of inx and

& is the standard deviatien of f&nx.

~rr vy T T TIER
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The parameters vy and § used for the lognormal approximation are obtained
in terms of the standardized extreme median (X) and standardized extrere

mode (X) by means of the following identities:

{1} The mean of inx is the logarithm of the median of x;
(2) The variance of Znx is the logarithm of the ratio of

median of x to the mode of x (Reference 1, page 18).

Let the underlying normal distribution of interest have mean ¥ and standard

deviation . The required lognormal parameters are then givea by

: y = anlu + %o) : : (17)

u + Xo /2
§ = {an{— 3 (18)
U + XO

The median (Y) of the standardized normal extreme for n samples is defined

bv the following equation:
[F()1" = 0.5 (19)

Combining Ecuations (2) and (i® to eliminate n gives the following desired
U .
equation for the standardized extreme median (X} in terms of the standardized

characteristic largest value (un):

FX) = expllin 0.5) (1 = F(u )] (20)

where F is the normal CDF.

The mode (X) of the stan ardized norral extreme for n samples is defined by

Gumbel (Reference 1, paat 133) in terms of the following equation.

,)‘("F(')\(') = n-1 (2])
CE (0
where F is the normal CDF, and

f is the normal PDF.

Combining Equations (2) and (21) to eliminate n gives the following desired
equation for the standardized extreme mode (X¥) in terms of the standardized

characteristic largest value (Gn):
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(22)

- The lognormal approximation to the distribution of normal extremes is

defined by Equations (16) through (22). This representation may be
considered adequate for values of the standardized characteristic largest

value (Gn) less than 3.

A second approximaticn to the distribution of normal) extremes was proposed

by Fisher and Tippett (Reference 4). The proposed CDF is of the form

-k
0B (y) = exp[-( Ly ] (23)
un
(;n2 + 1)2
where k = T {2%)
(un - 1)

This general form is denoted by Gumbel (Reference 1, page 298) as the

third asymptotic dis;ribution of extreme values or the extremal type 11l
distribution, By inverting Equation {23), approximate percentage points
for extremes of the standardized normal variate are obtained as follows

in terms of the cumulative probability, p:

x - u in o - in(-tnp) :
y === explinu, ] (25)

k

A special characteristic of this extremal.type 11l distribution is that it
converges for increasing values of the parameter k toward the extremal type
t distribution. Thus, in practice, the extremal type lil distribution may

be used to represent normal extremes for all values of Gn greater than 3.

For very large values of Gn' the extremal type | distribution, which is the

theoretical asymptotic distribution of normal extremes, may be used. For the

ncrmal standardized variate (y), the type ! distribution function is

-an(y - un)

0(‘)(y) = exp(-e ) (26)

where
" ~ -} __~ -3 ~ -5
p S ULt U 2u_ 7+ 100, (27)

Q)
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This expression for the standardized normal extremal intensity function is
derived by Gumbel (Reference 1, page 137). The type | extreme value dis-
tribution may be used, if desired, to describe normal extremes for

standardized characteristic largest values exceeding 8.
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2.2 Probabilistic Structural Design Criteria ‘

1
The extended reliability structural design approach procused by Ang and

Amin {Reference 6) recognizes both the probabilistic nature of limit loads
and strength and the analytical uncertainties associated with their evalua-
ticn. The uncertainties associated with determining limit loads and strengths
can be quantified by a factor of uncertainty {v) equal to or greater than
unity. Thus the event (S/L > v) constitutes a state of structural safety,
where S and L represent the strength and limit load associéted with a struc-
tural component. 1f S and L are both random variables, then the probability
Pls/L > v] is = proper measure of structural séfety. The extended reliabil-
ity structural design approach is then expressed by the following probabil-
istic equation for structural safety:

PLE>vl=1-P : (28)

where S is th2 random variable describing the component strength,
L is the random variable describing the component limit load,
v is the Ang-Amin coefficient of uncertainty for the component, and

PF is the component probability of failure or acceptable risk.

When the limit-load and strength probability density functicns are known,

the structural design approach may be expressed in two equivalent forms:

y/v
1-P = fL(x) . fs(y) dx dy (29)
o0 VX
P = fs(y) . fL(x) dy dx ' {30)

where fL(x) is the limit-load probability density function (PDF), and
fs(y) is the strength PDF.

The conventional factor of safety is defined as the ratio of the allowsble

stress (SA) to the design limit Xoad~(LD):

10
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D X

3
FS = —

whgre SA is the value of the random strength corresponding to a
specified exceedance orobability (PA), and
LD is the value of the random limit load corresponding to
a specificed non-exceedance probability (PD).

The purpose of the factor of cafety in the structural design procedure is

to locate the strength PDF =2lative to the given limit-load PDF so that
Equation {29) or (30} results in the required component probability of
failure. This concept is illustrated in Figure 2.2-1. For most probability
distributions, the integral of Equation (29) or (30) must be evaluated
numerically and the required factor of safety determined by trial-and-error
procedures. However, for certain specific distributions, closed-form evalua-

tions leading to convenient design formulas are possible.

A particularly convenient d2sign factor-of-safety equation occurs when both

limit loads and strengthé are assumed to follow the !ogndrmal probability law.

As discussed in Section 2.}, the lognormal distribution often accurately
represents the theoretically proper distribution for limit loads. Moreover,
for much existing strength data, the lognormal distribution also is a
satisfactory representation, due perhaps to the deletion of low-strength

values by quality-control procedures.

The component factor-of-safety expression for lognormal limit loads and

strengths is derived in Reference 3 in the following form:

S
FS = -E-::—= v exp -[F-I(PF) Jzn[(l + VLZ)(] + Vsz)] (32)
+ F—‘(PD) Vjin(l + VLZ) + F"(PA) \;jin(l + vsz)}

vwhere v is the Ang-Amin coefficient of uncertainty,
PF is the probability of failure or acceptable risk,

is the non-exceedance probability for design limit load {ty),

is the exceedance probability for allowable stress (SA)'

i1
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;\ Q“; VL and VS are limit-load and strength ccefficients of variation,
Vs , !
‘! - i
‘\ . F ‘(P) is the inverse of the standardized normal cumulative
y distribution function given by
‘ ey,
- ; 1 [ -5t
o , P = e 2 °dt (33)
— ( Y 2rn J—m
i . The numerical behavior of the lognormal/lognormal factor of safety is shown
. ! graphically in Figure 2.2-2. For this plot, the defining probabilities for -
! design limit load and allowable strength are both taken as 99 percent, and
~ the coefficient of uncertainty is taken as unity. The factor of safety is
~ seen to increase monotonically with decreasing probability of failure for
given load-and strength coefficients of variation.
o
From Equation (32}, the component factor of safety corresponding to a
specified probability of failure may be computed. The allowable strength

is then determined, from Equation {31), as the product of the factor of
safety times the design limit load. Additicnal details regarding the

application of this probabilistic design approach are presented in Ref-
erence 3. Procedures for determining the basic limit-load probability
distributions from which the specific design limit load is selected are

discussed in the following section.
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3.0 METHODOLOGY DEVELOPMENT l

Structural dynamic analyses resulting in design limit loads may be performed
either in the time domain or in the frequency domain. The Taylor's series
method and the Monte Carlo method are two widely used techniques for determining
limit loads from time-domain analyses. The Taylor's series method, described

in Section 3.1, is an extension of the parameter variation study often perforued
to evaluate sensitivity to parametric data uncertainties. The Monte Carlo '
method, described in Section 3.2, is a simulation of the loading condition
using a random combination of vehicle parameters and environments. For each
load quantity of interest, the maximum vaiue occurring in each simulated
mission is identified and recorded. The maximum load data from a number of
simulated missions approximates the desired extreme-value limit~load

distribution.

Iin Section 3.3, a new method is presented for determining the extreme-value
limit-load distribution from a frequency-domain analysis. This method
determines the probability distribution of the extreme largest load value,

for a stationary Gaussian random process, occurring within a given mission
length.

15
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3.1 Limit Loads from Taylor's Series Analyses

A detailed discussion of the use of the Taylor's series method to estimate

limit-load probability distributions for aerospace launch vehicles is

presented by Lovingood (Reference 7). This application involves first
analytically simulating the structural loads and responses encountered by a
nominal launch vehicle flying through a moderately severe synthetic wind

profile. The resulting loads are considered to be the nominal or mean

“ values for the limit loaa probability distribution.” The peak or design

limit load values, which are defined as the '"'3-¢' values having non-exceedance
probabilities of 0.9987, are next obtained by computing the variations in

load due to 3-c variations in the significant vehicle pérameters, taking

the root-sum-square variations of each load quantity,ﬂand adding these to

the corresponding mean values.

This method is useful for efficiently predicting preliminary and interim
structural design loads. However it has the disadvantage of requiring a
synthetic wind profile defined such that the mean values of all the limit
loads of interest are produced by the analytical simulations. Besides the
difficulty of defining this proper synthetic environment, the Taylor's
series method is based on three fundamental assumptions whicih may not be
valid for particular applications. These assumptions will be discussed in
t1e brief derivation which follows. A similar derivation in Reference 7 is

somewhat more detailed.

The distribution of a nonlinear function of several random variables may be
obtained by approximating the desired function as a linear function in the
region of interest. The mean and standard deviation of a linear function

of several independent random variables are known from elementary probability
theory (Reference 8, page 48). |If X|. X2’ cees Xn are independent random
variables having means Mys Moy veey Mo and variances $) 522, cens snz,
respectively, and if 31y gy seey an are constants, then a linear random

function may be defined as follows:

16
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f(KUY’t/‘.",XI;) = G,X, + 4 Xl toc T an Xy) (34)

The mean of f is

my, = a, m, +‘ G g * t a,ing (35)

Thus the mean of a linear combination of random variables is equal to the
linear combination of the means. This result is valid even if the X's are

dependent.

The variance of f is
T iy N T L
sp=a s, tays, t tans, (36)

Thus the variance of a linear combination of independent random variables
is equal to the sum of the products of variances and squared constants. In
addition, if the X's are normally distributed, then f is also normally

distributed with mean me and variance sfz.

A nonlinear function may be expanded in a Taylor's series about any given

point as follows {Reference B, page 62):
/(Xt, X‘L/ , Xn) = [(M'I /’)’i;_/ " ’”/}")

OXi | ray mq, ) fig

F
s () e
Vs

. '. , ; R .

o e . oY X4 4 old 2 E RS

(X, ,,,n);‘_ + hignes of, r F1:5 (37)
U nlyay ey Mia

If the higher order terms are negligible, the mean of f is, according

to Equation (35), approximately equal to:
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m,{‘ﬁ f(ﬁ?,) ﬁ"l/“'/ mn) :\ (38}

If, in addition, the X's are independent, the variance of f is, according

to Equation (36), approximately equal to

1
1 -é__f + 200
X i, i, e, 1
- z
L of

S, |y
n l axn Vn,j .”r'?zj "') YN on

Futhermore, if the X's are normally distributed, f is approximately normally

* (39)

distributed. |If the X's are normally distributed and if the function is
linear so that Equation. (37} contains no higher order terms, then the mean
and variance are exactly as given by Equations (38) and (39) and the
theoretical distribution of the function is the normal distribution (Refer-

ence 9, page 90).

The three assumptions in the use of the Taylor’s series method are as

. follows:

(1) that the higher-order terms in the Taylor expansion are negligiﬁle
compared with the first-order terms,

(2) that the X's are indecpendent, and

(3) that the X's are normally sistributed.

The accuracy of design limit loals determined by the Taylor's series method

depends in part upon how well the particular physical simulation is

represented by these three assumptions. In Section 4.1, a discussion of

18



the effects of these assumotions is presented along with numerical
demonstrations of the method. So long as the potential disadvantages
of this method are recognized, it remains an efficient and useful tocl

for estimating preliminary and interim design limit loads.

19
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3.2 Limit Loads from Monte Carlo Simulations

i The Monte Carlo method is a powerful and general tool for predicting
structurai design loads. The method has been gaining wider acceptance for
dynamic load studies of aerospace vehiclas (References &4, 10, 11. 12}. For
this application; the method consists essentially of simulating a random
loading phenomenon by combining deterministic and probabilistic variables.
The limit-load probability distribution for each load quantity is then the
distribution of the largest loads occurring in each simulated miscion. For
the launch vehicle load simulations described in Reference 10, the determin-
istic variables included such vehicle parameters as mass and geometry,
structural dynamic chafacteristics, propellant slosh parameters, and control-
system parameters. The probabilistic variables for this study were restricted
to descriptions of the wind environment. The wind was represented both by
detailed measured wind profiles including turbulence and by filtered measured
wind profiles with the turbulence considered separately using power spectral
density (PSD) methods.

In general, probabilistic variables may include any factors not determin-
istically known, including initial conditions, propulsion characteristics,
alignment tolerances, and mass properties. For time-domain simulations,
sample values of individual random variables nay be generated using digital
random number generators such as those described in References 13 and 14,
Sémple time histories of random processes such as wind turbulence can be
generated from PSD data using the technique described in Reference i5. Of
course, actual sample values or sample time histories from test data may be

used directly as the random inputs to a Monte Carlo time-domain simulation.

A major considcration in the general application of the Monte Carlo method
is to reduce the required cost of simulation as much as possible. In
Reference 16 {(page 146), H. Kahn describes several such techniques. Two
of these (Russian Roulette and Use of Expected Values) have been used

successfully in structural load analyses. Russian Roulette involves

20
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concentrating the computational effort on cases of special interest. For a
landing dynamics analysis, the cases of interest may be those having the
largest initial kinetic energy which therefore result in the largest structural
loads. For a flight loads analysis, the cases of interest may be those

having the wind profiles resulting in largest loads; the critical profiles

are identified using very greatly simplified flight simulations. These cases
identified as being of special interest are then analyzed using the more
detailed simulation methods. The Use of Expected Values is merely a separation
of computational tasks into what can be efficiently calculated analytically
and what must be simulated by Monte Carlo methods. An example of this
technique is the separation of the wind profile into small-scale turbulence
(efficiently treated by PSD methods) and large-scale variations as describec

in Reference 10. -

Another technique which may be used successfully for determining probabilistic
design limit loads is the statistical estimation method. As an extension of
the norral confidence limit concept, this method i« based on the generally
valid representation of random limit loads by the lognormal probability law.
The expression of the one-sided normal confidence limit as derived in Reference
k is valid for Monte Carlo samples of 50 or more observations. This expression
can be simply modified as follows to be valid for samples as small as 20
observations.

Let Yy Yoo coes Y, be n independent observations of a normal random variable
with mean my and standard deviation sy. The unbiased estimates of the sample

mean and variance, which are stochastically independent, are given by

4
* jpoeod —— -
Wy h é Y, (40)

¢=1

" 2
N C—
syt Ll = (yi—my )
. n-1 4
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According to Wilks (Reference 17, page 208), the sample mean (mi) is normally
distributed with mean (my) and standard deviation (sy/n) and the sample

variance is distributed as follows
: <2
} r 2 - .
(n-1) s\~ ~ X, (2)
s. v .

The Chi-square distribution with k degrees of freedom (xi) is approximately
normal for large k {Reference 17, page 189). However, a much more rapidly
converging apprcximation is given by Bowker and Lieberman (Reference 8,

page 556) : _
Nzze ~NV(Vze-1,1)

The close convergence of this approximation for 20 degrees of freedom is
shown in Figure 3.2-1. Combining Equations (42} and (43) results in the
following approximaté distribution for the sample standard deviation for n

as small as 20:

® Z <
S~ N sVZ'?“’ ) (44)
g (s Zn-z [z (n-) )

Define the true c x 100 percentile load by

B = my t ki Sy (45)
where o = — j e v Jt
. \=7F oo

The statistical estimate of Fu is

2 # #
= + .
F m, K Sy | (46)
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From Equations (35), (36), and (hh), the mean and variance of F are

E[?] = my * Kos, \’1".1‘_‘7;_ (47)
Varff} = _§£ + Ky (48)
h 2 (n-1)

The one-sided confidence limit equation is

F(Eg‘ﬁ]= g (49)

Equation (49) implies that ,
= : .
-Kg = F. - E[F] - (50)

o~

Var[FT
where ) _l_.t"‘-
8 j e * dt
-Ke

Substituting Equations (45), (47), and (48) into Equation (50) and solving

for the appropriate root of K yields

k{ = ﬁ:o< -\{2; + f(,g ‘ 4 f5 f‘/q//}j (51)
‘ A
where A : C - K;-/?.(f’)'/)
B= Kg/2(n-I)
¢ = (2a=2)/(2n-2)

Equation (51) may be used with Equation (46) tc determine the one-sided

- confidence limit for any probability level (¢} and confidence level (8)

so long as the sample size (n} is at least 20.




The statistical estimation method for use in estimating the limit load
probability distribution from at least 20 unbiased Monte Carlo observations

is described as follows for each load quantity of interest:

(1) Calculate the sample mean and standard deviation of the natural

logarithms of the observed losds using Equations (40) ar~ (&41).

(2) calculate the one-sided confidence limits for several different

probability ledé!s-(n) for a given confidence level (8) using Equations

(46) and (51)

Flaye) = mf = K(x,p) s/
Flxn 2 = my + K(a('l,(ﬁ’) Sy

. . . -

(3) Solve for the mean épd standard deviation of the logarithms which provide

the least-squares fit to the following equations:

/?(o(f,,e) = iy (B) * Ky Sy ()
Fxy,g) = my@ * Kg Sy (f).

. . . .

(4) Convert my(S) and sy(B) to lognormal mean mx(a) and coefficient of

variation Vx(ﬁ) using the following standard expressions

: 2
Ve = [ exp (sp9) -1 -
.an(g) = {! + V, (@)z']i'exp (my(ﬁ))‘ (53)
Equations (52} and (53) are c;hsistent with the following notation:
Y = L X
where )( N LO?I’?O":‘ »’C{/ (/H)() VX - Sx/}’/)x)
Y ~ /\/D/rn&/ (my, Sy )
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This statistical estimation method provides conservative estimates of the

lognormal parameters of limit loads determined from at least 20 Monte Carlo
simulations., The degree of conservatism in the estimated parameters is,
of course, dependernt on the confidence level (£) chosen. The estimated
parametric values are also somewhat dependent on the particular probability
levels (ui) chosen for the least-squares fit. A numerical demonstration

of this method is presented in Section 4.2.
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3.3 Limit Loads from Frequency - Domain Simulation
i

In the practical solution of random vibration problems, th; dynamic char-
acteristics of a structural system are usually assumed to be linear and
deterministic, and the excitation is assumed to be random. Furthermore,

the random excitation is usually assumed to be stationary and Gaussian

with zero mean value, since the random process for the response can then

be completely characterized by its power spectral density function (Reference
g, page 89). Solutions to two random vibration problems for this special
case of statignary Gaussian response are available in the literature (Ref-
erence 18, page 293). The threshold-crossing problem is concerned with the
expected rate at which a random process X(t) exceeds a certain value. The
peak~distribution problem is concerned both with the probability distribu-
tion of peak magnitudes in X(t) and with the expected rate of occurrence of
the pecaks. However, neither of these available so‘utiqns'provides the
extreme-value probability distribution required for probabilistic ultimate
strength design. The objective of the present study is to determine the
probability distribution of the extreme largest value, for a stationary
Gaussian random process X({t), occurring within a given mission length. This
required limit-load probability distribution will be expressed in terms of
the power spectral density function (PSD) of the calculated load.

The real autocorrelation function associated with a real-valued stationary

‘random process X(t) may be defined by

T
. %im |}
Rxx(-r') ® o 3T X(t) x{t+7) dt (54)
, oy
Equations relating the autocorrelation function and the power spectral
density function (PSD) are known as the Wiener-Khintchine relations (Ref-
erence 19, page 579). For a real-valued random process, such as the random

load in a structural nember, the defining equations may be written

2]
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as follows:

R{1)

@ ' g
J 6{w) coswtr dw - (55}
0

6 (w)

n
ERES

R{x) cosur dt (56}
s]

where G{w) is the load PSD with frequency (») in radians/second.

The load PSD may alternatively be written with frequency in Hz as follous

R(x) = | r(f) cos2afy df (57)
-0
r{f) = 4 R{t) cos2aft dt (58}
0

where f = w/2% in Hz.
For some applications, the load PSD may be more Conveniently defined in
terms of spatial frequency (radians per unit distance) and spatial distance
instead of circular frequency (radians per second) and time. Equations {55}

and {56) with appropriate notation changes may be used as the defining

Wiener-Khintchine relations for such applications. .-

With no loss of generality, a stationary random process may be assigned a
zero mean value. The variance of such a real-valued random process is
obtained from Equations (55) and (57) by evaluating the autocorrelation
function for zero time lag, A
R(0) = 02 = | Gluw)du = J r(f) df (59}
0 0

Equations (54) through (59) form a consistent set of definitions for use in
harmonic analysis of stationary random processes. Since many authors use

alternate forms of the Wiener-Khintchine relations (Reference 19, page 5%0),

special care is required when applying formulas for random vibration analysis.
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Standard methods are available for computing the PSD of loads in a linear
structure due to stationary Gaussian excitation (References 18, 20, 21).

th

The output response PSD for the r calculated load quantity is given by

the follewing general equation: T

o ) = L =G0 T6Ga) L, Gu)} (60)

where {Lir(ju)} is the column matrix of complex frequency responses

for the rth load quantity and for i excitation points,

lLri*(jmll is a row matrix of the complex conjugates of Lir(jw),
and

IGf(jw)] is the PSD matrix of input power spectral density

functions for each of the 1 excitation points and cross-

power spectral densities between the excitation points.

The following development converts the Gaussian load PSD typically defined by
Equation (60) intc an extreme-value limit-load pfobability distribution

required for probabilistic structural design.

The critical parameter in the three distributions used for describing
extreme normal variates is the characteristic largest value (u). Its
magnitude increases with sample size until, as n becomes very large, it con-
verges to the most‘probable value (mode} of the asymptotic egtremal type |
distribution (Reference 1, page 172). However, as described in Section 2.1,
the convergence of the normal extremes to the type | distribution is so slow
that the lognormal and extremal type 111 distributions must be used for small
and moderately sized samples. The following developrent is based on expres-
sing the characteristic largest value in terms of Rice's theorem for the

expected number of threshold crossings per unit time.

According to Rice (Reference 22, page 192), the expected rate of zero
crossings from below for a stationary Gaussian process with zero mean is
given by - ,
2 1/z
£ r(f) df
EiN, (0) = | 2 (61)

r{f) df
0
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With the PSD defined in radians per second {or radians per'unit distance),
Equation (61) becomes - ‘ !
wz G{u) du 1/2
¢ _1}’0
EIN,{0)] = 52— (62)

j: 6u) du

With ithe random structural load PSD defined by Equation (go) the integrals

of Equations (g1) and (62) will converge whenever the input PSD has a finite
variance. o

The equation for the expected number of times per unit time or distance that
the Gaussian load passes through the threshold value (¢) with positive slope
is given by Rice (Reference 22, page 192) as follows:

2
EIN, (£)] = E[N_(0)] exp ( :—E-z- ) (63)
20
where E[N+(O)] is defined by Equation (61) or (62) and
o is defined by Equation (59). |
Equation (63) may alsc be found in Reference jg({page 297), Reference ;) {page
42), and Reference 23 (page 5.121) among many other sources. It is restricted
to stationary Gaussian random processes having zero mean values. Since the
Gaussian model is commonly used to represent inflight atmospheric turbulence
(Reference 23, page 5.116) and transonic buffeting (Reference 20), this

restriction is not significant to most current engineering applications.

The expected number of threshold crossings in a given time or dirc.ance

interval (T) is obtained simply by modifying Equation (63) as follows:
. —Ez
ElN, ()] = T-EIN,(0)] enn( —5) (64)
- 20
where T defines the length of a mission.
The desired characteristic largest value in a sample of size n, u , is
defined as follows by Gumbel (Reference 1, cage 82): *In n observations,

the expected nurber of values equal to or larger than u s unity." Thus,

by definition, the characteristic largest value for a mission of length T
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is determined from Equation (g4) by setting the expected number of threshold
crossings to unity. The required characteristic largest value for the stand-

H
ardized normal variate is then

G- % 12 (e, D] (65)

where ¢ is defined by Equation (59) and
E[N+(0)] is defined by either of Equations (61) or (62).
This characteristic largest value for a stationary Gaussian random process
having zero mean is sufficient to completely define any of the three dis-

tributions used for normal extremes.

As discussed in Section 2.1, the convergence of norrmal extremes to the type
I asymptotic extreme-value distributicn is extremely slow. The type | dis-
tribution is therefore recommended for describing normal extremes only when
the characteristic largest value for the standardized variate exceeds 8. The
extremal intensity function () corresponding to the standardized character-
istic largest value {U) is given by Gumbel (Reference 1, pace 137) as follows

for normal extremes:

~-1

- -
a=u+u

5

-2673 + 106" (27)

The extremal type | curulative distribution function for the standardized

variate {y) is given by -
: g a
o )(v) = exp(-e aly vy (26)
where U and & are defined by Equations (65) -nd (27), respectively.

The extremal type lil distribution, which converges to the type | distribu-
tion with increasing a, is recommended for characteristic largest values

between 3 and B for the standardized normal variate. The type Ilf distribu-
tion function for normal extremes was first suagested by fisher and Tippett

(Reference 5). A suitableformof this distribution for the standardized

o3 (y) = exp[—( L )-k] (23)

u
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where k = Su*1” . (24)
(u™-1) !

The percentage points of this distribution as a function of the curulative

probability, p, are given by Gumbel {Reference 1, page 299) as

y = §= exp[in a - 3_"._(_;(_‘”‘_".91.] (25)
As discussed in‘Section 2.1, for characteristic largest values of the
standardized normal extremes close to 2, the lognormal distribution is
essentially identical to the actual distributicn of normal extremes cal-
culated by Tippett and plotted in Reference ! (page 129). For values less
than 3, the lognormal approximation is generally more accurate than the

extremal type lll approximation and is therefore recommended for this rancge.

The lognormal probability density function is

- 2
flx) = —1— exp- %‘( EI%;;L ) (16)
/27 5x
where y = fLnX+ino (66)
X y41/2
§ = [an{ :-)} (67)
¥ .
X is the median of the standardized normal extreme, and
X is the mode of the standardized normal extreme.

)
The required median (x} of the standardized normal extreme is cbtained frem

the following equation: -
s i .
F(x) = exp[0.69315(F(u)-1)] (20)

where F(G) is the normal cumulative distribution function evaluated at u.
Equation (20) is a medified form of the equation for medians of extrerme values
given by Gumbel (Reference 1, page 79). The Gaussian probability functicons
are tabulated, for exarple, in Reference B (page 555) and Reference 24

(page 33).

The required mode (;) of the standardized normal extreme is obtained from the

following equation:
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XF(X) _-_F(0) (22)
£(X)  1-F(0)

Equation (22)is a modified form of the equation for modes of normal extrermes

given by Gumbei (Reference |, page 123). Tabulated values of F(x)/f(x)
may be found in Reference 2 (page 11).
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5.0 "NUMERICAL DEMONSTRATION

The methods previously described for determining limit~load probability
distributions from time-domain and frequency-domain analyses have certain
limitations which may be best illustrated by numerical! examples. Section
4.1 presents three numerical examples of the Taylor's series method which
demonstrate the effects of the method's fundamental assumptfons. Section
4.2 demonstra}es the statistical estimation method which may be used tc
reduce the requiréd number of Monte Carlo simulations. These numerical
examples are based on sets of random numbers generated by a digital coﬁputer.
The method for determining limit loads from a frequency-domain analysis is
demonstrated using numerical data obtained from an analog Gaussian noise
generator. Section 4.3 presents the results of three examples of chis

method.
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51 Examples of Taylor's Series Method

As discussed in Section 3.1, the Taylor's series method for estimating the
probability distribution of a nonlinear function of several random variables
is based on the following three assumptions:

(1) that the higher-order terms in the Taylor expansion of the function
are negligible compared with the first order terms,
(2} that the individual random variables are mutually independent, and

(3) that the individual random variables are each normally distributed.

The following is a brief discussion of the implications of these assuymptions
with numerical examples.

Consider a function of four random variables

FWXYE) = WhX/Y +Z
where W~ Norma[ (mw TL0, Jw = 2—)
X~ (mx=2, Sx T0.87755)
Y /\/51*/::(:/ (m/ = 2} 5/ = 0.2)
£ Normal (m, =0, 83 = (O)

By the Taylor's series method, the estimates of the mean, Qariance, and

standard deviation of the function are as follows:

Me = e+ tsfiey + Mg = 400

“ T | 2 R
'S‘( x Zi‘liw'r'“;)'sl (‘ﬂw) SX mw r/}x) ERIRCE-S
'ﬁy rﬂ, rl\)z

- .~ acad
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The stochastic behavior of this function was studied for three different

cases. Case | involved dependent variables (pwy = -0.5) ard a non-normal

“variable with the variable X being uniformly distributed in the range 1

- to 3. tCase 2 involved a non-normal variable (X~ U (1,3)) but all variables

were independent. Case 3 involved ali normai and independent variables.

The mean and standard deviation and the cumulative distribution function
(CDF) were determined from a Monte Carlo simulation using a sample size of
2000 for each of the three cases. The Monte Carlo simulations were performed
with the Boeing Generalized Statistics Progrém (GESP) described ir References
13 and 4. The resulting means and standard deviations are presented in
Table 4.1-1 for comparison with the Taylor's series estimates. Results of
significance tests of the hypothesis that the Monte Carlo parameters are
identical to the Taylor's series parameters are also presented in Table

4,1-1 along with the results of a Chi-square test for normality (Reference

8, page 366). The hypothesis test for the mean was performed using Student's
t statistic (Reference 8, page 127). The hypothesis test for the standard
deviation was performed using the Chi-square statistic (Reference 8, page 138).

The acceptance probabilities for such hypothesis tests are usually established

" at either ci.z percent or five percent levels. Values of the 37-degree-of-

freed~n Chi-square statistic corresponding to these probability levels are

59 and 52, respectively.

For this particular function, the Monte Carlo means and standard deviations
are seen to approach the Taylor's series parameters as the assumptions of
independence and normality of the individual variables are better satisfied.
The hypothesis tests indicate that the mean determined by the Taylor's series

method is sufficiently accurate regardless of normality and independence of
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Table 4.1~}

Numericai Evaluation of Taylor's Series Method

i

2
Method me S¢ P{Ym > mf] P[YS > sf] X33
Taylor's series Lo0.0 1544 - - -
Monte Carlo
Case 1 409.4 172.3 0.008 ] 200.1
Monte Carlo
Case 2 405.9 159.0 0.043 0.028 133.3
Monte Carlo
Case 3 402.8 156.8 0.210 0.164 127.6

p—
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the individual random variables; the standard deviation determined by the
Taylor's series method is su;ficiently accurate only when the individual
réndom variables are independent. However, for none of the three cases

was the hypothesis of normality verified by the Chi-square test. In Figure
k.1-1, the cumulative distribution function determined from the Monte Carlo
simulation for Case 3 is plotted versus the Taylor's series normal distribution
to illustrate the results of the Chi-square test.

These numerical examples are consistent with the theory discussed in
Section 3.1. An accurate estimate of the mean requires only that the
higher~order terms in the Taylor's series expansion are negligible, whereas
an accurate estimate of the variance requires the additional assumption of
independence among the individual random variables. All three assumptions
must be satisiied in order that the function be approximately normally
distributed. For the function studied, the second and higher partial
derivatives are negligitle or zero except with respect to the Y variable.
The numerical influence of the reglected non-zero terms on the Taylor's

series estimate of the mean and standard deviation appears to be small.
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5.2 Examples of Monte Carlo Method

As described in Section 3.2, the statistical estimation methed is a technigue
for conservatively estimating the lognormal limit~load carameters from a

small sample of observed loads from a Monte Carlo simulation. The numerical
demonstration of this method is based on a simulated analysis in which the
limit load is defined as the largest load occurring in 100 independent
observations of a standardized normal variate. By means of the GESP random
number generator (éeferences 13 and 14), 2000 simulated limit loads were
generated. The limit-load distribution was apprcximately lognormal

(P[x§7 > 49] = 0.095) with mean equal to 2.509 and coefficient of variation
equal to 0.1715. Ten data sets of 20-values each were statistically analyzed
to determine the sample mean of the logarithms (mi) and the standard deviation
of the logarithms (53). The best~fit mean m, (5) and standard deviation sy(e)
of the logarithms were then conservatively estimated using the 90% one-sided
confidence limit (Equation 51) for two sets of probability levzls. The
probability levels designated confidence fit "'a'" were biased to positive values:
Ka =1, 2,3, 4, 5. The probability levels designated confidence fit ''b"
were unbiased: K, = -4, -3, -2, -1, 0,1, 2,3, 4, 5 The sample data and
the conservative estimates for confidence fits “a' and ''b" are presented in
lables 4.2-1 and L.2-2, respectively. For comparison purposes, the 'true’
sample mean and standard drviatiéﬁ of the logarithms based on 2000 values

are my = 0.%05 and sy = 0,1703.

The data presented in Tables 4.2-1 and 4.2-2 are plotted on normal probability
paper in Figures 4.2~1 through 4.2~10. Each plot shows, for each data set,
the conservatively estimated distributions based on 20 values along with the
"true'' distribution based on 2000 values. Both ctonservative distributions
result in values larger that the '"true' values for the probability range of
interest. Values from the biased confidence fit "a'" suggest that most of

the conservatism is in the estimate of the standard deviation. Values from
the unbiased confidence fit ''b'" show a more balaﬁced approx{mation to the
“"true' distribution.
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Table 4.2-1

Demonstration Using 90% Confidence Fit 'a"

i

1

Parameters for Statistical Estimation

Data Set T§ si qy(e) Sy (8)
] _0.886 0.1830 | 0.915 0.2301
2 0.804 | 0.1669 | 0.830. | 0.2099
3 0.893 | 0.2320 | 0.929 | 0.2918
A 0.872 0.1888 | 0.901 0.2374
5 0.910 0.1819 | 0.938 0.2287
6 0.901 | 0.1459 | 0.92k | 0.1835 |
7 0.877 0.1467 | 0.900 0.1845
8 0.930 0.1543 | 0.954 0.1940
9 0.815 0.1684 | 0.841 0.2118
10 0.859 | 0.1750 | 0.887 | 0.2200
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Table 4.2~2 Parameters for Statistical Estimation

Demonstration Using 90% Confidence Fit 'p"

Data Set mi s$ ? my(B) ’ sy (&)
] 0.886 | 0.1830 f 1.00k | 0.1995
2 0.804 0.1663 : 0.912 | 0.1820
3 0.893 : 0.2320 . 1.043 g' 0.2530
4 0.872 | 0.1888 | 0.99% | 0.2058
5 0-910 70,1819 | 1.027 | 0.1383
6 0.901 : 0.1459 | 0.995 | 0.1591
7 0.877 | 0.1467 | 0.972 . 0.1600
8 0.930 | 0.1543 | 1.030 | 0.1683 ]
9 1§ _0.815 . 0.168k , 0.974 | 0.7836
10

0.859 j 0.1750 - 0.973 . 0.1907

LY



£y

 99.99
20

99.9 99.8 99.5 .99 98 95 90 80 70 60 50 40 30 20 10 5 2 1 05 0201005 001
| ! | i ' 1} ] i LI i

L] I 1

| SO i 1

e #Tryue” distribution from 2000 values

s e o Egtimated distribution from 20 values
using 90% confidence fit “a®

s s s Estimated distribution from 20 values
using 90% confidence fit "b"

H I 1 ] 1 1 1 i i 1 i i 1 ! 1 11

i | LI

0
0.01

0050102 05 1

2 5 10 20 30 40 650 60 70 80 90 95 98 99 99,5 99.8 99.9

Figure 4.2-1. Example of Statistical Estimation Method — Data Set 1

99.99




1Y

27,99 90,9 99.8 99.5.93 98 95 90 80 70 60 50 40 30 20 10 5 2 1 05 0201005 0.01

2.0 T 1 T t ] 4 | 1 i 1 i ] | i 1 i L i i LR
1.8 -
1.6 -~
Pl

144

1.2 -
30 -
08 -]
0.6 -

*True™ distribution from 2000 valués
0.4 / ' . e -

e we Estimated distribution from 20 values

/ using 50% confidence fit “»”

\ ¢ o s s Egtimated distribution from 20 values

0.2 e using 90% confidence fit *b* "
1 1 ] 1 i ] 1 i 1 ! ! 1 1 M | - | | ! 1 1 i

0 1
0.01 0.0%

0102 05 1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 99.5 99.8 99.9

Figure 4.2-2. Example of Statistical Estimation Method — Data Set 2

99.99

NFOIVO

7

‘?:'fd ri

rres
Ve

rURLE RS

12

(T30 A

13

satliande



Sh

|

/
99,99 99.9 99.8 995,99 08 95 90 80 70 60 50 40 30 20 10 5 2° 1 05 0201005 0.01 /
20 LI B IS B | T I { LI I B B | 1 l 1 L L VT / A .
18 . / -
1.6 |- ‘ '
1.4 |-
1.2
10}
e Lo
" 08
Q.6
, E—— "True® distribution from 2000 values
0.4 ’/ s
: ./ // v = o o= Estimated distribution from 20 values §
e 7 using 80% confidence fit “a”
o e o
3 7 7 . sesmmsemmns Estimated distribution from 20 valueg ~.
02 7 ' using 90% confidence fit *b* “
0 L1l 11 1 1 1 1 N S N | 1 ) | I B L1
0.01 0050102 05 1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 99,5 99.8 99.9 89.99
Figure 4.2-3.  Example of Statistical Estimation Method — Data Set 3
/'



9

v .
69,99 99.9 99.8 99.5.99 938 95 80 70 60 50 40 30 20 10 2 1 05 0201005 0.01
2.Q T 1 T ] 1 ] | T | i oo 1 i 1 1 i ] 1 IR
1.8 -
/
1.6 - / / —
1.4
12F
1.0}
0.8
0.6
mmmm——— T rue™ distribytion from 2000 values
0.4 e ome == Estimated distribution from 20 values
/ using 90% conf_idence fit “a”
: sumem s emem e Estimated distribution from 20 values
02 / wsing 90% confidence fit “b™ 7
YN S S NN YUY W D | [ SR VN S N Ll L 41

0
001 0050102 05 Vv 2 5 10

20 30 40 50 60 70 80 90 85 88 09 99.5 59.8 99.9

Figure 4.2-4. Example of Statistical Estimation Method — Data Set 4



Iy

99.9 99.8 99.5.99 98 95 90 B0 70 60 50 40 30 20

10 5 2 1 05 0201005 001

99.99
20

1.8

1.6}

14 -

1.0}

0.6 -

0.2~

l1lllllll|llll L S A N e

— T rye™ distribution from 2000 values

e wme e Estimated distribution from 20 values
using 90% confidehce fit “p"

7~ \ semme samme s Estimated distribution from 20 values
” using 90% confidence fit *b"™

Lo l.1 1 1 ! 1 1 1 | | 1 i i 1 1 ! ! i 1 -

0.01

0050102 05 v 2 5 10 20 30 40 50 60 70 80 90 95 93 g9 99,5 99.8 99.9

Figure 4.2-5.  Example of Statistical Estimation Method - Data Set 5

99.99

3
i 2



IR

8%

U y . ; 3 j i
- 99,99 99,9 99.8 99,5.99 98 95 90 80 70 60 50 40 30 20 10 ] 2 1 05 0201005 0.01
2.0 1T 1 T 1 I 1 LN DU B R BN 1 i T T T 11
1.8~ -
1.6 - ~
‘ e
1.4 -
1.2+
10
0.8
0.6 -
./ e *Tre® distribution from 2000 values
0.4 o e wee Egtimated distribution from 20 values 7
using 90% cohfidence fit “a®
; oo s oume e Extimated distribution from 20 values -
02+ C . using 90% confidence fit *b"™ .
0 A B | [ | 1 1 3 DI T B S ! | i L1 1 I
001 0050102 05 1 2 5 10 20 30 40 50 60 70 80 90 - 95 98 99 99.5 99.8 99.9 99.99

Figure 4.2-6. Example of Statistical Estimation Method -~ Data Sct 6

e

R .

o %

Cad

' .
P r—— . B - . .
o ST et o

o e Kl o e

03
£



64

I I A § . .
! N ¢ . N B N i Ly

99.99 §9.9 99,8 99,5.99 98 95 90 g0 70 60 S0 40 30 20 10 5 2 t 05 020.10.05 0.01%
2.0 T 1 T 1 I T T | 1 1 | 1 { I 1 i T T 1
1.8} -
1.6} o
14
12k -
1.0 -t
08 -
0.6 i~ -
e T re® distribution from 2000 values
.4 -
0 o o e Estimated distribution from 20 values
using 90% confidence fit "a"
o2k - . v s o Esiimsated distribution from 20 values
-2 using 90% confidence fit *b* 7
o 11 L 1.1 1 1 1 1 {131 1 1 1 1 L1 1
001 0050102 05 1 2 ] 10 20 30 40 50 60 70 B0 g0 95 08 099 99.5 99.8 98.9 99.99

s i

Figure 4.2-7. Example of Statistical Estimation Method — Data Set 7

P A : .
. . ; »

izl

e AT o e

o el

.
i
I

%
SIS SR

LA

P

o e

- — T
.

\



0s

99,99 99.9 9.8 99.5.99 98 95 90 80 70 60 50 40 30 20 10 1 05 0201005 0.0
20 1 1§ 1 1 7 ¥ I 1 1T T 1 i ) I | | R |
1.8~ -
'.6 o / ol
.4
’02 ol
1.0}
08¢ -
0.6 - .
emmman *True® distribution from 2000 values.
04 e == Estimated distribution from 20 values 7
using 80% confidence fit “a®
R : sommn o mmne s Estimated distribution from 20 values
02 using 90% confidence fit *b™ . -
0 1.1 L3 1 1 1 | N S N B | 1 1 1 [ . 1.1
001 0050102 05 1 2 5 10 20 30 40 S 60 70 B0 90 95 98 99 99,5 99.8 99.9 99.99

Figure 4.2-8. Example of Statistical Estimation Method —~ Data Sct 8

P
D

-




A e AT Ty

9

dHL WU AL i}.u.l‘dii‘..i){&@-ﬁi

) / / ~
i [0 - A ; q ‘
PoA
:
$9.99 99.9 99.8 99.5.99 98 95 90 80 70 60 50 40 30 20 10 5 2 1 05 0201005 0.0t Q
20 I R S N | T | L DL L T T T I SR RS N M .
18 -t ‘
1.6} :
14 k :
o
1
12} ? §
1.0 P
o
Loy
08} .
s
3
e *True™ distribution from 2000 values b
- - oo
04 ./ -~ onm emem wew Estimated distribution from 20 values b
— // using 90% confidence fit “s” i
- Py
' sumunn o e s Estimated distribution from 20 values i E
02 // using 90% confidence fit *b” N !
~
0 S I N I I | 1 1 | I R N N S T | 1 1 I T O T :
001 0050102 05 1 2 5 10 20 30 40 50 60 70 80 80 95 98 09 99,5 99.8 90.9 99.99

Figure 4.2-9, Example of Statistical Estimation Method — Data Set 9




P
-

5

99.99 99,9 99.8 99.5.93 98 95 90 80 70 60 S0 40 30 20 10 5 ?2 1 05 0201005 00

20

1.8

1.6

1.4

1.0

0.8

0.6

0.4

0.2

NN S S | T T T 1 1T T 1 T I T T 1 1 T T 1
A
L]

e T 6™ distribution from 2000 values

e o e Estimated distribution from 20 values B
‘ using 90% canfidence fit "a®

' : 2 o e s Estimated distribution from 20 values

o // using 90% confidence fit “b® -
L1 1 L1 1 i 1 1 [N N DO T | 1 ] ] L L1 1.1

0
001 0050102 05 1 2 5 10 20 30 40 S0 60 70 &0 g0 95 98 99 99.5 99.8 99.9

Figure 4.2-10. Example of Statistical Estimation Method — Lata Set 10

99.99

-/
.
‘
>
-
N
}
f . 0
i i) e
i i
;
i
i
i L
i
:
v
. .

'

1
ooe
b !
i Y s
i N [

.
LR 15
|2 A \
v 4 \
LRC t /-



4.3 Examples of Frequency - Domain Method
Numerically demonstrating the method for determining the limit-load

probability distribution from the power spectral density function (PSD)

of a Gaussian random process has two general aspects. The first is
demonstrating that the extreme values from a continuous Gaussian time
series of specified duration behave mathematically as extremes from a
population of discrete normal variates. The second is demonstrating that
the logrormal and extremal type 111 distributions provide valid repre-
sentations of the actual distribution of extremes when based on the follow-
ing expression for the standardized characteristic largest value derived

in Section 3.3:

~ U R 1/2
u=c=[2(T-ElN (0)])] . (65)
Both of these aspects will be demonstrated using'nhmer}Eal data obtained

from an analog Gaussian noise generator.

The Eigenco Model 311A Gaussian Hoise Generator was used to obtain the
required random time histories. This electronic device provides a stable
and reliable source of Gaussian random noise having the following

characteristics:

(1) The output PSD is uniform to +0.1 dB from 0 to 35 Hz; the output
falls of f rapidly above 40 Hz.

(2) The amplitude probability density function is Gsussian (normal) to

less than ) percent.

The output of the Gaussian noise generator was passed through three first-
order filters, all having cutoff frequencies of 25 Hz. The purposc of
this filtering was to specify accurately the high-frequency roll-off so
that the actual PSD could be precisely defined. The PSD used for the

"numerical demonstration is defined as
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Fﬁ)=az;gi for 0 < f < k0 (68)
[+
= 0 for f > 4o

where fc = 25 Hz, and

a? = 2.785 is the magnitude factor determined

empirically from the generated output.

Figure 4.3-1 presents time histories of the unfiltered random noise pro-

duced directly by the Elgenco Noise Generator and of the random noise after

it was passed through three 25 Hz filters.

Jo determine the actual mean and standard deviation of the generated time

series, a statistical analysis of the filtered output time history was

performed, based on the assumptions of ergodicity and stationarity. A

twenty-second duration of the output from the noise generator was sampled

at 0.02-second intervals to provide 1000 data points.

The mean and standard

deviation of this large sample were then computed with the following

results:
n = ~0.229
o= 6.418

These statistical estimates were assumed to be the true parameters of the

generated time series for all subsequent studies.

A Chi-square goédness-of~fit test {Reference é, p. 365) was also performed

with the sample of 1000 data points to verify that the generated output

was Gaussian,
into 19 cells, was 19,
probability of less than 75 percent,

The Chi~square statistic, based on a division of the data

This value corresponds to a Chi-square cumulative

Thereforz, the random time histories

obtained from the noise generator may be justifiably considered Gaussian

with parametric values as estimated,
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The magnitude factor of 2.785 used in the PSD expression defined by
[quatfon.(68) is consistent with the empirically determined standard
deviation. With this PSD expression, the expected rate of zero crossings

per second with positive slope was calculated to be 12.77. This compares

well with the observed average of 13.0 taken from 26 seconds of the generated

random time history.

Because the theory developed in Section 3.3 applies only to Gaussian random
processes having zero mean values, the DC bias of -0.229 was subtracted
from the generated time histories for all subsequent numerical comparisons.
Each desired extreme-value observation was defined as the largest positive
value occurring in a specified time duration, T. The theoretical symmetry
of the Gaussian distribution was used to assure uniformity of the extreme-
value data. Tﬁus, observations of extremes were taken equally from the
positive and negative peaks, and the absolute values of the two data sets
were combined into one total sample. The positive and negative data values
were selected from different sections of the random time history, except
for the data corresponding to T = 100 seconds. According to Gumbel
(Reference 1, p. 110), the extreme largest and extreme smallest values are
asymptotically independent for large sampies. Thus, the combining of
positive and negative extreme values from the same time-history section for
T = 100 seconds is believed to be justified theoretically.

Verifying that observed extreme values from a génerated time series behave
mathematically as normal extremes was accomplished by comparing observed
and theoretical curwlative prebability distribtutions. The theoretical
probability distyibution, representing the largest inaividual in samples

of size n taken from a standardized normal population, was tabulated by

K. Pearson in Reference 2, {page 162). The basic relation between sample
size {n) and characteristic largest value {u) for a specified distribution

is given by Gumbel (Reference 1, page 82) by

Flu) = 1 % ‘ (2)

56

[ RPN



ooyt

The theoretical distribution of standardized normal extremes for 200 di;-
crete samples, which corresponds to a standardized characteristic largest
value of 2.5758, was selected for comparison with an observed extreme-value
distribution obtained from the generated time series. From Equation (65},
the value of T corresponding to this characteristic largest value is 2.161
seconds for the specified PSD. The observed probability distribution was
obtained from 200 samples of largest values occurring in time intervals of
2.161 seconds from the generated random time history. The 200 values were
modified to eliminate the DC bias and then ranked in increa-i~~ order. The

cumulative probability assigned to the ith observed value was i/201.

The comparison between the observed and theoretical disti ~ “ions i, shown
in Figure 4.3-2. The excellent agreement is corroborated v . ¥ - s>-uare
test of the hypothesis that the observed distribution is identical to the
theorétical distribution of normal extremes. The Chi-square statistic,
based on a division of the data into 20 cells, was 22.8. This value
corresponds to a Chi-square cumulative probability of approximately 80
percent. Therefore, the observed extreme values obtained from the generated
random time series may be considered as normal extremes from a discrete
cample of size n, where n is determined from Equation { 2} given the

characteristic largest value,

Verifying the accuracy of the lognormal and extremal type lli distributions
to represent normal extremes in terms of the standardized characteristic
largest value from Equation (65) was accomplished by comparing the approxi-
mating distributions with the distribution of observed extremes for two
different time intervals, T, For T = 1.0 second, the standardized
characteristic largest value corresponding to the specified PSD is 2.257.
This is in the rarge where the lognormal distribution provides a nearly
perfect representation of the actual distribution of rormal extreres,
Therefore, the required lognormal parameters may be obtained from Equations
(20), (22), (66), and (67) of Section 3.3. The siraight line in Figure 4.3-3
corresponds to v = 2.733 and £ = 0.193. The lognorral approximation is seen
to provide a very good representation of the observed distribution plotted

from 500 data points.
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For T = 100 seconds, the standardized characteristic largest value
corresponding to the specified PSD is 3.782. This is in the range where

the extremal type 11l distribution provides a somewhat better representation
of the actual distribution of normal extremes than the lognormal distri-
bution. The required extremal type [l parameter for the standardized
variate, obtained from Equation (24) of Section 3.3, is k = 17.604. The
corresponding distribution, obtained from Eguation (25) of Section 3.3, is
shown in Figure 4.3-4. The lognormal distribution also shown in this

figure corresponds. to v = 3.213 and 4 = 0.140. The extremal type I1l is

seen to provide an adequate representation of the observed distribution plotted
from 118 data points. The standard deviation for the lognormal approxiration,
which determines the slope of the straight line, is seen to be too large.
Sinc2 the median value is accurately determined for both approximating
distributioﬁs, the characteristic largest value calculated fiom the Gaussian
PSD by Ecuation (65) is seen to be the proper value for defining the desired

extreme-value distribution.
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5.0

CONCLUSIONS AND RECOMENDATIONS

The methods for determining limit-load probability distributions from time-

domain and frequency-domain dynamic loads analyses have been described and

numerically demonstrated. The primary contribucion is obtaining the extreme-

value probability distributions from the Gaussian PSD of a frequency-domain

analysis. Another contribution is obtaining conservative estimates »f the

limit-load probability distributions from a small number of Monte Carlo

simulations.

Recommended areas for additional research include the following:

1.

improve the accuracy of the estimate of the parameter 5 in Equation (67)
for the lognormal approximation to the distribution of normal extrenes

vhen O > 3.

Study the possibility of combining the Monte Carlo technique of Russian
Roulette and the statistical estimation method to determine more efficient

estimates of the limit-load parameters from Monte Carlo analyses.

Develop a metlnd for obtaining the extreme-value distributions fron a

combination of time-domain and frequency-domain dyramic loads analyses.

‘Study methods of accounting for payload mass and stiffness variations

in dynamic loads analyses.
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