54 research outputs found

    Safety and Protective Activities of Manufactured Alcohol-Free Beers

    Get PDF
    Nowadays, a general interest in improving health in order to achieve better conditions of life is increasing. Diet is a complex factor affecting health conditions. We analysed the biological activities of three types of alcohol-free lager beer (a blond, a pale-blond and a stout beer) as well as epicatechin gallate (ECG) as one of their most abundant phenols with the aim of revealing them as nutraceuticals. For that purpose, we carried out safety and protective assays of the tested substances in the well-known Drosophila melanogaster animal model. Moreover, chemoprevention studies on human leukaemia cells (HL-60) in an in vitro model were carried out to evaluate the viability and genomic damage potential of the studied compounds on the tumour cell line. Results suggest the safety properties of all compounds, although pale-blond and stout beer only showed genotoxic activity at the lowest concentrations assayed. Moreover, alcohol-free beers and phenols were able to protect against H2O2 oxidative damage as well as to induce an increase in longevity with an improvement of the quality of life in the in vivo animal model assayed. Promising results were obtained with the alcohol-free beers and ECG in the in vitro assays with human leukaemia cells as they inhibited the tumour cells’ growth, induced DNA damage and modified the methylation status of such a cancer cell line. To sum up, alcohol-free beers should be of interest not only because of their reduced calories and isotonic properties but because they can be recognised as nutraceutical substances

    Butter from different species: composition and quality parameters of products commercialized in the south of Spain

    Get PDF
    Butter is an important product for the dairy industry due to its particular sensory attributes and nutritional value, while the variability of the composition of the fatty acids in the milk can alter the nutritional and physical properties of butter and its acceptance by consumers. Butter is highly appreciated for its distinctive flavor and aroma; however, one of its main drawbacks lies in the difficulty in spreading it at low temperatures. Several types of butter that are present in the market were used in this study. We assessed the variability in the composition of the samples regarding their texture, color properties, and volatile organic compound profiles. We analyzed samples commercially produced from sheep’s milk (SB), goat’s milk (GB), and cow’s milk (CB); samples from the latter species with (CSB) and without salt (CB); and the low-fat (CLB) version. All the physicochemical composition parameters were significantly affected by the effect of the type of butter, although only 29 out of the 45 fatty acids examined were identified in the butter samples analyzed. The textural properties of the butters were influenced by both their solid fat content and the fatty acid profile. In addition, the origin of the milk not only affected the texture parameters but also the color of the butters and the compounds associated with traits such as odor and flavor. Through the multivariate data analysis of butter fatty acids and volatile compound percentages, we observed a clear differentiation of the samples based on the species of origin

    Nutraceutic Potential of Two Allium Species and Their Distinctive Organosulfur Compounds: A Multi-Assay Evaluation

    Get PDF
    This study aimed to evaluate the biological activities of two Allium species (garlic and onion) as well as diallyl disulphide (DADS) and dipropyl disulphide (DPDS) as their representative bioactive compounds in a multi-assay experimental design. The genotoxic, antigenotoxic, and lifespan eects of garlic, onion, DADS, and DPDS were checked in Drosophila melanogaster and their cytotoxic, pro-apoptotic, and DNA-clastogenic activities were analyzed using HL60 tumoral cells. All compounds were non-genotoxic and antigenotoxic against H2O2-induced DNA damage with a positive dose-response effect and different inhibition percentages (the highest value: 95% for DADS) at all tested concentrations. Daily intake of Allium vegetables, DADS, or DPDS had no positive effects on flies’ lifespan and health span. Garlic and DADS exerted the highest cytotoxic effects in a positive dose-dependent manner. Garlic and DADS exerted a DNA-internucleosomal fragmentation as an index of induced proapoptotic activity on HL60 cells. Allium vegetables and DADS were able to induce clastogenic strand breaks in the DNA of HL60 cells. This study showed the genomic safety ofthe assayed substances and their protective genetic effects against the hydrogen peroxide genotoxine. Long-term treatments during the whole life of the Drosophila genetic model were beneficial only at low-median concentrations. The chemo-preventive activity of garlic could be associated with its distinctive organosulfur DADS. We suggest that supplementary studies are needed to clarify the cell death pathway against garlic and DADS.Fil: Fernández Bedmar, Zahira Noemí. Universidad de Córdoba; EspañaFil: Demyda Peyrás, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Merinas Amo, Tania. Universidad de Córdoba; EspañaFil: del Río Celestino, Mercedes. Laboratorio agroalimentario; Españ

    Aceite de semilla de mostaza etíope con alto contenido en ácido oleico

    Get PDF
    Referencia OEPM: P9902552.-- Fecha de solicitud: 19/11/1999.-- Titular: Consejo Superior de Investigaciones Científicas (CSIC).Aceite de semilla de mostaza etíope con alto contenido en ácido oleico. La presente invención se refiere a un aceite de semilla de mostaza etíope (nombre científico Brassica carinata A.Braun) carente de ácido erúcico (menos de 2% en peso respecto al contenido total en ácidos grasos del aceite) y con un contenido en ácido oleico entre el 60% y el 80% en peso del total de ácidos grasos. Este tipo de aceite no es producido en la naturaleza por plantas de mostaza etíope y ha sido obtenido mediante un procedimiento biotecnológico. El aceite es muy estable frente a la oxidación y las altas temperaturas, lo que hace que sea especialmente indicado en alimentación humana y también en la industria de aceites lubricantes.Peer reviewe

    Nutraceutic Potential of Two Allium Species and Their Distinctive Organosulfur Compounds: A Multi-Assay Evaluation

    Get PDF
    This study aimed to evaluate the biological activities of two Allium species (garlic and onion) as well as diallyl disulphide (DADS) and dipropyl disulphide (DPDS) as their representative bioactive compounds in a multi-assay experimental design. The genotoxic, antigenotoxic, and lifespan effects of garlic, onion, DADS, and DPDS were checked in Drosophila melanogaster and their cytotoxic, pro-apoptotic, and DNA-clastogenic activities were analyzed using HL60 tumoral cells. All compounds were non-genotoxic and antigenotoxic against H2O2-induced DNA damage with a positive dose-response effect and different inhibition percentages (the highest value: 95% for DADS) at all tested concentrations. Daily intake of Allium vegetables, DADS, or DPDS had no positive effects on flies’ lifespan and health span. Garlic and DADS exerted the highest cytotoxic effects in a positive dose-dependent manner. Garlic and DADS exerted a DNA-internucleosomal fragmentation as an index of induced proapoptotic activity on HL60 cells. Allium vegetables and DADS were able to induce clastogenic strand breaks in the DNA of HL60 cells. This study showed the genomic safety of the assayed substances and their protective genetic effects against the hydrogen peroxide genotoxine. Long-term treatments during the whole life of the Drosophila genetic model were beneficial only at low-median concentrations. The chemo-preventive activity of garlic could be associated with its distinctive organosulfur DADS. We suggest that supplementary studies are needed to clarify the cell death pathway against garlic and DADS

    Quantification of Total Phenolic and Carotenoid Content in Blackberries (Rubus Fructicosus L.) Using Near Infrared Spectroscopy (NIRS) and Multivariate Analysis

    Get PDF
    A rapid method to quantify the total phenolic content (TPC) and total carotenoid content (TCC) in blackberries using near infrared spectroscopy (NIRS) was carried out aiming to provide reductions in analysis time and cost for the food industry. A total of 106 samples were analysed using the Folin-Ciocalteu method for TPC and a method based on Ultraviolet-Visible Spectrometer for TCC. The average contents found for TPC and TCC were 24.27 mg·g−1 dw and 8.30 µg·g−1 dw, respectively. Modified partial least squares (MPLS) regression was used for obtaining the calibration models of these compounds. The RPD (ratio of the standard deviation of the reference data to the standard error of prediction (SEP)) values from external validation for both TPC and TCC were between 1.5 < RPDp < 2.5 and RER values (ratio of the range in the reference data to SEP) were 5.92 for TPC and 8.63 for TCC. These values showed that both equations were suitable for screening purposes. MPLS loading plots showed a high contribution of sugars, chlorophyll, lipids and cellulose in the modelling of prediction equations

    Toxicological and Epigenetic Studies of Two Types of Ale Beer, Tyrosol and Iso-Alpha Humulone

    Get PDF
    Although many benefits drawn from beer consumption are claimed, the epidemiological records are contradictory with respect to cancer prevention. The purpose of this study was to investigate the possible health-related activities involving genome safety and the ageing processes of two types of lyophilised ale beers (blond and stout), as well as two of their bioactive compounds (tyrosol and iso-alpha humulone). A multipurpose trial set of in vivo toxicity, antitoxicity, mutagenicity, antimutagenicity, lifespan and healthspan assays using Drosophila melanogaster were used. In parallel, several in vitro assays were designed using the cancer cell line HL-60 in order to establish the possible chemopreventive activity of the selected substances, where epigenetic modulation of DNA methylation changes, clastogenic activity and tumour cell inhibition growth were evaluated. The safety of the four substances was confirmed: lyophilised blond ale beer (LBAB), lyophilised stout ale beer (LSAB), tyrosol and iso-alpha humulone were neither toxic nor genotoxic. Moreover, all substances, except tyrosol, revealed the ability to protect individual genomes against oxidative radicals and to exert antimutagenic activity against the genotoxin hydrogen peroxide. With respect to the degenerative process indicators of lifespan and healthspan, tyrosol was the only compound that did not exert any influence on the life extension of Drosophila; LBAB induced a significant lifespan extension in D. melanogaster; LSAB and its distinctive compound iso-alpha humulone induced a reduction in longevity. The in vitro assays showed the cytotoxic activity of LBAB, LSAB and tyrosol against HL-60 cells. Moreover, proapoptotic DNA fragmentation or DNA strand breakage was observed for both types of beers and iso-alpha humulone at different concentrations. Furthermore, the lyophilised ale beers and tyrosol exhibited an increasing genome-wide methylation status, while iso-alpha humulone exhibited a demethylation status in repetitive cancer cell sequences. Although the biological activities assigned to beer consumption cannot be linked to any specific molecule/element due to the complexity of the phenolic profile, as well as the multifactor brewing process, the results obtained let us propose lyophilised ale beers as safe potential nutraceutical beverages when consumed in moderate amounts. The prevention of toxicity and genetic oxidative damage, as well as the induction of tumor cell death and modulation of the methylation status, are the key activities of beer that were shown in the present research

    In Vivo and In Vitro Assays Evaluating the Biological Activity of Taurine, Glucose and Energetic Beverages

    Get PDF
    Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®

    Food Safety and Nutraceutical Potential of Caramel Colour Class IV Using In Vivo and In Vitro Assays

    Get PDF
    Nutraceutical activity of food is analysed to promote the healthy characteristics of diet where additives are highly used. Caramel is one of the most worldwide consumed additives and it is produced by heating natural carbohydrates. The aim of this study was to evaluate the food safety and the possible nutraceutical potential of caramel colour class IV (CAR). For this purpose, in vivo toxicity/antitoxicity, genotoxicity/antigenotoxicity and longevity assays were performed using the Drosophila melanogaster model. In addition, cytotoxicity, internucleosomal DNA fragmentation, single cell gel electrophoresis and methylation status assays were conducted in the in vitro HL-60 human leukaemia cell line. Our results reported that CAR was neither toxic nor genotoxic and showed antigenotoxic effects in Drosophila. Furthermore, CAR induced cytotoxicity and hipomethylated sat-α repetitive element using HL-60 cell line. In conclusion, the food safety of CAR was demonstrated, since Lethal Dose 50 (LD50) was not reached in toxicity assay and any of the tested concentrations induced mutation rates higher than that of the concurrent control in D. melanogaster. On the other hand, CAR protected DNA from oxidative stress provided by hydrogen peroxide in Drosophila. Moreover, CAR showed chemopreventive activity and modified the methylation status of HL-60 cell line. Nevertheless, much more information about the mechanisms of gene therapies related to epigenetic modulation by food is necessary

    Toxicological and Nutraceutical Screening Assays of Some Artificial Sweeteners

    Get PDF
    Artificial sweeteners are food additives worldwide used instead of fructose or glucose in many diet beverages. Furthermore, diet beverages intake has been increasing every year. Thus, some food agencies should regulate it based on toxicological studies. Debates and controversial results are demonstrated, and authority can revise its decision on the basis of new data reporting toxicological effects since cyclamate has been forbidden in some countries. Therefore, the aim of this study was to report new data about the toxicity of acesulfame-k, aspartame, and cyclamate, which are useful for authority agencies, determining the toxic potential and nutraceutical capabilities of these compounds. The toxicity, antitoxicity, genotoxicity, antigenotoxicity, and life expectancy assays were carried out in Drosophila as an in vivo model. In addition, in vitro HL-60 line cell was used to evaluate the chemopreventive activity determining the cytotoxic effect and the capability of producing DNA damage due to internucleosomal fragmentation or DNA strand breaks. Furthermore, the methylated status of these cancer cells treated with the tested compounds was assayed as a cancer therapy. Our results demonstrated that all tested compounds were neither toxic nor genotoxic, whereas these compounds resulted in antigenotoxic and cytotoxic substances, except for cyclamate. Aspartame showed antitoxic effects in Drosophila. All tested compounds decreased the quality of life of this in vivo organism model. Acesulfame-k, aspartame, and cyclamate induced DNA damage in the HL-60 cell line in the comet assay, and acesulfame-k generally increased the methylation status. In conclusion, all tested artificial sweeteners were safe compounds at assayed concentrations since toxicity and genotoxicity were not significantly induced in flies. Moreover, Aspartame and Cyclamate showed protective activity against a genotoxin in Drosophila Regarding nutraceutical potential, acesulfame-k and aspartame could be demonstrated to be chemopreventive due to the cytotoxicity activity shown by these compounds. According to DNA fragmentation and comet assays, a necrotic way could be the main mechanism of death cells induced by acesulfame-k and aspartame. Finally, Acesulfame-K hypermethylated repetitive elements, which are hypomethylated in cancer cells resulting in a benefit to humans
    corecore