13 research outputs found

    A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors

    Get PDF
    A missense change in RRAS2 (Gln to Leu), analogous to the Gln-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2 triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2 of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2 is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.We thank M. Blázquez and the personnel of the CIC Flow Cytometry, Microscopy, Pathology, and Genomics Units for expert technical work. X.R.B.’s project leading to these results has received funding from the Spanish Association against Cancer (GC16173472GARC), the Castilla-León government (CSI252P18, CSI145P20, and CLC-2017-01), the RTI2018-096481-B-100 grant cofounded by MCIN/AEI/10.13039/501100011033 and the European Research Development Fund “A way of making Europe” of the European Union, and “la Caixa” Banking Foundation (HR20-00164). X.R.B.’s institution is supported by the Programa de Apoyo a Planes Estratégicos de Investigación de Estructuras de Investigación de Excelencia of the Castilla-León government (CLC-2017-01). J.R.-V. received funding from the Carlos III Health Institute (PI20/01724). J.R.-V.’s contract is supported by a senior postdoctoral contract of the Spanish Association against Cancer. L.C.’s contract was supported by contracts from the Spanish Association against Cancer and the CLC-2017-01 grant. L.F.L.-M.’s contract was mostly supported by funding from the Spanish Ministry of Education, Culture and Sports (FPU13/02923) and, subsequently, by the CLC-2017-01 grant. R.C. was supported by a predoctoral contract from the MSI (BES-2016-0077909) and the CLC-2017-01 grant

    Manual municipal sobre control de vertidos

    Get PDF
    El agua, como motor de desarrollo y fuente de riqueza, ha constituido uno de los pilares fundamentales para el progreso del hombre. La ordenación y gestión de los recursos hídricos, que ha sido desde siempre un objetivo prioritario para cualquier sociedad, se ha realizado históricamente bajo directrices orientadas a satisfacer la demanda en cantidades suficientes, bajo una perspectiva de política de oferta. El incremento de la oferta de agua como herramienta para el impulso económico, el mayor nivel de contaminación, irremisiblemente asociado a un mayor nivel de desarrollo, algunas características naturales (sequías prolongadas, inundaciones) y en definitiva una sobreexplotación de los recursos hídricos, han conducido a un deterioro importante de los mismos. El desarrollo de la Directiva Europea y Nacional respecto a control de vertido responsabiliza al Ayuntamiento directamente de los vertidos del municipio al exterior, y consecuentemente al Alcalde Presidente de cada Municipio. Por ello la Diputación de Sevilla, cumpliendo su labor de auxilio técnico al municipio ha encargado al Grupo TAR este manual municipal de control de vertidos para asesorar continuamente a todos los pueblos de la provincia de Sevilla, con la vocación de que sea una herramienta permanente de consulta que ayude a conseguir que la provincia lidere el cumplimiento de las normas y el desarrollo sostenible de todo su entorno. Real Decreto Legislativo 1/2001, de 20 de julio, por el que se aprueba el texto refundido de la Ley de Aguas de 1.985, junto con la nueva Directiva Marco europea para la política de agua suponen un cambio importante en los conceptos y criterios utilizados en la planificación hidrológica e introducen la calidad de las aguas y la protección de los recursos hídricos como puntos fundamentales para estructurar dicha planificación. El estado ecológico de un agua sería una expresión de la calidad de la estructura y del funcionamiento del ecosistema y cuyos criterios de clasificación (muy bueno, bueno y aceptable), en función del tipo de ecosistema acuático de que se trate, se recogen en los anexos de la directiva

    Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES)

    Get PDF
    Prevention, Diagnosis and Management of Post-Surgical Mediastinitis in Adults Consensus Guidelines of the Spanish Society of Cardiovascular Infections (SEICAV), the Spanish Society of Thoracic and Cardiovascular Surgery (SECTCV) and the Biomedical Research Centre Network for Respiratory Diseases (CIBERES) doctors and radiologists. Despite the clinical and economic consequences of sternal wound infections, to date, there are no specific guidelines for the prevention, diagnosis and management of mediastinitis based on a multidisciplinary consensus. The purpose of the present document is to provide evidencebased guidance on the most effective diagnosis and management of patients who have experienced or are at risk of developing a post-surgical mediastinitis infection in order to optimise patient outcomes and the process of care. The intended users of the document are health care providers who help patients make decisions regarding their treatment, aiming to optimise the benefits and minimise any harm as well as the workload.Funding: J.M. Miró was a recipient of a personal 80:20 research grant from IDIBAPS during the period 2017–2021

    High-resolution mass spectrometry identification of dye compounds and their degradation products in American cochineal from a historic shipping cargo

    Get PDF
    Cochineal dyes constitute paradigmatic organic compounds that guide in the elucidation of historic cultural and economical exchanges. This study combines liquid chromatography and high-resolution tandem mass spectrometry to assess the degradation products of the organic dyes of American cochineal collected from the cargo of a 16th century sunken wreck. The identification of biological materials of historical and archeological origin is often challenging due to molecular degradation. In this scenario, the mapping of the chemical routes underlying the fate of the organic and biochemical compounds employed as taxonomic biomarkers becomes of crucial importance. This work shows that, under harsh environmental conditions, the original carminic and (flavo)kermesic acid structures of cochineal dyes are prone to chemical transformation, typically losing the carboxylic acid and glucoside groups. The anthraquinone core is preserved in the majority of degradation products identified in this study, with eventual side chains reminiscent of a partial degradation of the glucoside moiety. The comparison of these observations with the analysis of modern cochineal samples allows us to lay out an updated chart of dye compounds and degradation products which should constitute a seminal benchmark for future biomolecular analysis of historic and archeological dye materials.Proyecto Arqueomemes (PY-FR-18:2001) Junta de Andalucía

    Xarxes socials i portals de salut, setembre 2013

    No full text
    Recurs d'aprenentatge de la Universitat Oberta de Catalunya.Recurso de aprendizaje de la "Universitat Oberta de Catalunya".Learning material of the "Universitat Oberta de Catalunya"

    Nanomaterials: a Map for Their Selection in Food Packaging Applications

    Full text link
    [EN] Even though research on nanotechnology has increased rapidly in the last decades, the application of nanotechnology in food and beverage packaging started to show an interest in the scientific community much more recently. Food safety, quality and improvements of properties compared with conventional materials make nanomaterials very attractive in the field of food and beverage packaging applications. Furthermore, in many cases, nanomaterials are used for both food packaging and the food contained, especially when we talk about nanomaterials for active and intelligent packaging. Oxygen scavengers, antimicrobial nanomaterials and nanobiosensors are some examples of current research efforts on nanomaterials for food packaging. This fact has led to a variety of nanoparticles and nanomaterials. The wide range of existing nanomaterials could make its selection for food packaging applications a challenge. Thus, building up a map based on the current state-of-the-art nanoparticles and nanomaterials is required. Furthermore, there is a need to classify all the nanomaterials used specifically in food packaging, independently of their nature, the packaging material and the way they are integrated to this material. In this paper, a classification of the latest advances in this field was made accompanied by the use of Multi-Criteria Decision Analysis in order to find which are the most relevant (and/or expected to be potentially exploited in the near future) nanomaterials in the area of food packaging. Copyright (c) 2014 John Wiley & Sons, Ltd.The research leading to these results has received funding from the European Union's Seventh Framework Programme managed by the Research Executive Agency http://ec.europa.eu/research/rea (FP7/2007-2013 NMP 2011.1.1-1) under grant agreement no. 280759 Nanobarrier.Sanchez Reig, C.; Dobon Lopez, A.; Hortal Ramos, M.; Cloquell Ballester, VA. (2014). Nanomaterials: a Map for Their Selection in Food Packaging Applications. Packaging Technology and Science. 27(11):839-866. https://doi.org/10.1002/pts.2076S8398662711Platt D The Future of Global Packaging Pira International Ltd 2009Sonkaria, S., Ahn, S.-H., & Khare, V. (2012). Nanotechnology and its Impact on Food and Nutrition: A Review. Recent Patents on Food, Nutrition & Agriculturee, 4(1), 8-18. doi:10.2174/2212798411204010008Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766-1782. doi:10.1016/j.progpolymsci.2011.02.003ISO/TS 27687: Nanotechnologies -- Terminology and definitions for nano-objects -- Nanoparticle, nanofibre and nanoplate 2008ISO/TS 80004-1: Nanotechnologies -- Vocabulary -- Part 1: Core terms 2010Dobon A NanoSafePack: Development of a best practices guide for the safe handling and use of nanoparticles in packaging industries 2013Bradley, E. L., Castle, L., & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, 22(11), 604-610. doi:10.1016/j.tifs.2011.01.002Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. doi:10.1016/j.jcis.2011.07.017Chaudhry, Q., & Castle, L. (2011). Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends in Food Science & Technology, 22(11), 595-603. doi:10.1016/j.tifs.2011.01.001Neethirajan, S., & Jayas, D. S. (2010). Nanotechnology for the Food and Bioprocessing Industries. Food and Bioprocess Technology, 4(1), 39-47. doi:10.1007/s11947-010-0328-2Sekton, B. (2010). Food nanotechnology – an overview. Nanotechnology, Science and Applications, 1. doi:10.2147/nsa.s8677Magnuson, B. A., Jonaitis, T. S., & Card, J. W. (2011). A Brief Review of the Occurrence, Use, and Safety of Food-Related Nanomaterials. Journal of Food Science, 76(6), R126-R133. doi:10.1111/j.1750-3841.2011.02170.xChaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., … Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants: Part A, 25(3), 241-258. doi:10.1080/02652030701744538Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82-89. doi:10.1016/j.tibtech.2008.10.010Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842. doi:10.1016/j.lwt.2010.01.021Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182. doi:10.1016/j.foodchem.2008.11.047Han, W., Yu, Y., Li, N., & Wang, L. (2011). Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216-1225. doi:10.1007/s11434-010-4326-6Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5), 417. doi:10.1039/b517131hGreijer, H., Karlson, L., Lindquist, S.-E., & Anders Hagfeldt. (2001). Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system. Renewable Energy, 23(1), 27-39. doi:10.1016/s0960-1481(00)00111-7Fthenakis V Kim HC Gualtero S Bourtsalas A Nanomaterials in PV manufacture: Some life cycle environmental- and health-considerations 34th IEEE Photovoltaic Specialists Conference PVSC 2009 002003 002008 10.1109/PVSC.2009.5411495Şengül, H., & Theis, T. L. (2011). An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. Journal of Cleaner Production, 19(1), 21-31. doi:10.1016/j.jclepro.2010.08.010Lloyd, S. M., & Lave, L. B. (2003). Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles. Environmental Science & Technology, 37(15), 3458-3466. doi:10.1021/es026023qLloyd, S. M., Lave, L. B., & Matthews, H. S. (2005). Life Cycle Benefits of Using Nanotechnology To Stabilize Platinum-Group Metal Particles in Automotive Catalysts. Environmental Science & Technology, 39(5), 1384-1392. doi:10.1021/es049325wRoes, A. L., Marsili, E., Nieuwlaar, E., & Patel, M. K. (2007). Environmental and Cost Assessment of a Polypropylene Nanocomposite. Journal of Polymers and the Environment, 15(3), 212-226. doi:10.1007/s10924-007-0064-5Khanna V Bakshi BR Lee LJ Assessing life cycle environmental implications of polymer nanocomposites 2008 1 6 10.1109/ISEE.2008.4562903Meyer, D. E., Curran, M. A., & Gonzalez, M. A. (2010). An examination of silver nanoparticles in socks using screening-level life cycle assessment. Journal of Nanoparticle Research, 13(1), 147-156. doi:10.1007/s11051-010-0013-4Walser, T., Demou, E., Lang, D. J., & Hellweg, S. (2011). Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts. Environmental Science & Technology, 45(10), 4570-4578. doi:10.1021/es2001248Deorsola, F. A., Russo, N., Blengini, G. A., & Fino, D. (2012). Synthesis, characterization and environmental assessment of nanosized MoS2 particles for lubricants applications. Chemical Engineering Journal, 195-196, 1-6. doi:10.1016/j.cej.2012.04.080Chapter 10: Green Electronics, Chemistry & Materials Nanotechnology 2012: Bio Sensors, Instruments, Medical, Environment and Energy 3 720 723 978-1-4665-6276-9Healy, M. L., Dahlben, L. J., & Isaacs, J. A. (2008). Environmental Assessment of Single-Walled Carbon Nanotube Processes. Journal of Industrial Ecology, 12(3), 376-393. doi:10.1111/j.1530-9290.2008.00058.xSingh, A., Lou, H. H., Pike, R. W., Agboola, A., Li, X., Hopper, J. R., & Yaws, C. L. (2008). Environmental Impact Assessment for Potential Continuous Processes for the Production of Carbon Nanotubes. American Journal of Environmental Sciences, 4(5), 522-534. doi:10.3844/ajessp.2008.522.534Bauer, C., Buchgeister, J., Hischier, R., Poganietz, W. R., Schebek, L., & Warsen, J. (2008). Towards a framework for life cycle thinking in the assessment of nanotechnology. Journal of Cleaner Production, 16(8-9), 910-926. doi:10.1016/j.jclepro.2007.04.022Isaacs JA Tanwani A Healy ML Environmental Assessment of SWNT Production Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment 2006 38 41 10.1109/ISEE.2006.1650028Khanna, V., Bakshi, B. R., & Lee, L. J. (2008). Carbon Nanofiber Production. Journal of Industrial Ecology, 12(3), 394-410. doi:10.1111/j.1530-9290.2008.00052.xDobon, A., Cordero, P., Kreft, F., Østergaard, S. R., Robertsson, M., Smolander, M., & Hortal, M. (2011). The sustainability of communicative packaging concepts in the food supply chain. A case study: part 1. Life cycle assessment. The International Journal of Life Cycle Assessment, 16(2), 168-177. doi:10.1007/s11367-011-0257-yRosy Wei Chen, Navin-Chandra, D., & Print, F. B. (1994). A cost-benefit analysis model of product design for recyclability and its application. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(4), 502-507. doi:10.1109/95.335032Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with foodGovernment of Canada Food Packaging Materials Using Nanomaterials http://nanoportal.gc.ca/default.asp?lang=En&n=E90655B6-1U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition Guidance for Industry Assessing the Effects of Significant Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients that are Color Additives 2012Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30-46. doi:10.1016/j.tifs.2011.10.006Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., … Sips, A. J. A. M. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53(1), 52-62. doi:10.1016/j.yrtph.2008.10.008Hatzigrigoriou, N. B., & Papaspyrides, C. D. (2011). Nanotechnology in plastic food-contact materials. Journal of Applied Polymer Science, 122(6), 3719-3738. doi:10.1002/app.34786Roy, B. (1996). Multicriteria Methodology for Decision Aiding. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-2500-1Verghese, K. L., Horne, R., & Carre, A. (2010). PIQET: the design and development of an online ‘streamlined’ LCA tool for sustainable packaging design decision support. The International Journal of Life Cycle Assessment, 15(6), 608-620. doi:10.1007/s11367-010-0193-2Avella, M., Cosco, S., Lorenzo, M. L. D., Pace, E. D., Errico, M. E., & Gentile, G. (2006). iPP Based Nanocomposites Filled with Calcium Carbonate Nanoparticles: Structure/Properties Relationships. Macromolecular Symposia, 234(1), 156-162. doi:10.1002/masy.200650220Avella, M., Bruno, G., Errico, M. E., Gentile, G., Piciocchi, N., Sorrentino, A., & Volpe, M. G. (2007). Innovative packaging for minimally processed fruits. Packaging Technology and Science, 20(5), 325-335. doi:10.1002/pts.761Li, X. H., Tjong, S. C., Meng, Y. Z., & Zhu, Q. (2003). Fabrication and properties of poly(propylene carbonate)/calcium carbonate composites. Journal of Polymer Science Part B: Polymer Physics, 41(15), 1806-1813. doi:10.1002/polb.10546Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch Nanoparticles: A Review. Biomacromolecules, 11(5), 1139-1153. doi:10.1021/bm901428ySanchez-Garcia, M. D., Lopez-Rubio, A., & Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science & Technology, 21(11), 528-536. doi:10.1016/j.tifs.2010.07.008Andersson, C. (2008). New ways to enhance the functionality of paperboard by surface treatment - a review. Packaging Technology and Science, 21(6), 339-373. doi:10.1002/pts.823EcoSphere Biolatex Binders http://www.ecosynthetix.com/biolatexr-technology/ecospherer/default.aspxRay, S. S., Okamoto, K., Maiti, P., & Okamotoa, M. (2002). New Poly(butylene succinate)/Layered Silicate Nanocomposites: Preparation and Mechanical Properties. Journal of Nanoscience and Nanotechnology, 2(2), 171-176. doi:10.1166/jnn.2002.086Zhijiang, C., & Guang, Y. (2011). Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Materials Letters, 65(2), 182-184. doi:10.1016/j.matlet.2010.09.055Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467-474. doi:10.1016/j.foodchem.2004.10.024Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233(1), 191-197. doi:10.1002/masy.200690017Ozkoc, G., & Kemaloglu, S. (2009). Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. Journal of Applied Polymer Science, 114(4), 2481-2487. doi:10.1002/app.30772Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 42(2), 612-617. doi:10.1016/j.lwt.2008.02.015Rhim, J.-W., & Ng, P. K. W. (2007). Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. Critical Reviews in Food Science and Nutrition, 47(4), 411-433. doi:10.1080/10408390600846366Koga S Gas-barrier and moisture resistant paper laminateDallas, P., Sharma, V. K., & Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 166(1-2), 119-135. doi:10.1016/j.cis.2011.05.008Mahalik, N. P., & Nambiar, A. N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science & Technology, 21(3), 117-128. doi:10.1016/j.tifs.2009.12.006Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3-4), 408-413. doi:10.1016/j.foodcont.2010.09.011Chaudhry, Q., Castle, L., & Watkins, R. (Eds.). (2010). Nanotechnologies in Food. Nanoscience & Nanotechnology Series. doi:10.1039/9781847559883Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology, 10(1), 15. doi:10.1186/1743-8977-10-15Golja V Samardžija Z Dražic G Novak S Presence of nanoparticles in some food contact materials from Slovenian market 5th International Symposium on Food Packaging 2012Cui, Y., Liu, H., Zhou, M., Duan, Y., Li, N., Gong, X., … Hong, F. (2010). Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. Journal of Biomedical Materials Research Part A, 96A(1), 221-229. doi:10.1002/jbm.a.32976Costantino, U., Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2009). New Polymeric Composites Based on Poly(ϵ-caprolactone) and Layered Double Hydroxides Containing Antimicrobial Species. ACS Applied Materials & Interfaces, 1(3), 668-677. doi:10.1021/am8001988Xiao-e, L., Green, A. N. M., Haque, S. A., Mills, A., & Durrant, J. R. (2004). Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 253-259. doi:10.1016/j.nainr.2003.08.010LI, H., LI, F., WANG, L., SHENG, J., XIN, Z., ZHAO, L., … HU, Q. (2009). Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chemistry, 114(2), 547-552. doi:10.1016/j.foodchem.2008.09.085Mills, A., & Hazafy, D. (2009). Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors and Actuators B: Chemical, 136(2), 344-349. doi:10.1016/j.snb.2008.12.048Tarver T Food Nanotechnology 2006 http://www.ift.org/Knowledge-Center/Read-IFT-Publications/Science-Reports/Scientific-Status-Summaries/Editorial/~/media/Knowledge%20Center/Science%20Reports/Scientific%20Status%20Summaries/Editorial/editorial_1106_functionalmaterialinfood.pdfKalia, A., & Parshad, V. R. (2014). Novel Trends to Revolutionize Preservation and Packaging of Fruits/Fruit Products: Microbiological and Nanotechnological Perspectives. Critical Reviews in Food Science and Nutrition, 55(2), 159-182. doi:10.1080/10408398.2011.649315Valdés, M. G., Valdés González, A. C., García Calzón, J. A., & Díaz-García, M. E. (2009). Analytical nanotechnology for food analysis. Microchimica Acta, 166(1-2), 1-19. doi:10.1007/s00604-009-0165-zSrinivas, P. R., Philbert, M., Vu, T. Q., Huang, Q., Kokini, J. L., Saos, E., … Ross, S. A. (2009). Nanotechnology Research: Applications in Nutritional Sciences. The Journal of Nutrition, 140(1), 119-124. doi:10.3945/jn.109.115048Jin, T., Sun, D., Su, J. Y., Zhang, H., & Sue, H.-J. (2009). Antimicrobial Efficacy of Zinc Oxide Quantum Dots againstListeria monocytogenes, SalmonellaEnteritidis, andEscherichia coliO157:H7. Journal of Food Science, 74(1), M46-M52. doi:10.1111/j.1750-3841.2008.01013.xLi, X., Lu, Z., & Li, Q. (2013). Multilayered films incorporating CdTe quantum dots with tunable optical properties for antibacterial application. Thin Solid Films, 548, 336-342. doi:10.1016/j.tsf.2013.09.088Regulation (EC) No 1935/2004 of The European Parliament and of The Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EECCommission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with foodU.S. Department of Health and Human Services Food and Drug Administration Office of the Commissioner Draft Guidance for Industry 2011 http://www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htmOffice of Policy Office of the Commissioner U.S. Food and Drug Administration FDA's Approach to Regulation of Nanotechnology Products http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htmHamburg, M. A. (2012). FDA’s Approach to Regulation of Products of Nanotechnology. Science, 336(6079), 299-300. doi:10.1126/science.1205441Bawa, R. (2013). FDA and Nanotech: Baby Steps Lead to Regulatory Uncertainty. Bio-Nanotechnology, 720-732. doi:10.1002/9781118451915.ch41U.S. Food and Drug Administration Inventory of Effective Food Contact Substance (FCS) Notifications http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?filter=&sortColumn=&rpt=fcsListingArreche, R., Blanco, M., Vázquez, P., & Martín-Martínez, J. M. (2012). Use of new silica fillers as additives for polymers used in packaging of fruit. Química Nova, 35(10), 1907-1911. doi:10.1590/s0100-40422012001000003Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2011). Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Applied Clay Science, 52(1-2), 34-40. doi:10.1016/j.clay.2011.01.025Costantino, U., Nocchetti, M., Sisani, M., & Vivani, R. (2009). Recent progress in the synthesis and application of organically modified hydrotalcites. Zeitschrift für Kristallographie, 224(5-6). doi:10.1524/zkri.2009.1153Bugatti, V., Costantino, U., Gorrasi, G., Nocchetti, M., Tammaro, L., & Vittoria, V. (2010). Nano-hybrids incorporation into poly(ε-caprolactone) for multifunctional applications: Mechanical and barrier properties. European Polymer Journal, 46(3), 418-427. doi:10.1016/j.eurpolymj.2009.11.003Longano, D., Ditaranto, N., Cioffi, N., Di Niso, F., Sibillano, T., Ancona, A., … Torsi, L. (2012). Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Analytical and Bioanalytical Chemistry, 403(4), 1179-1186. doi:10.1007/s00216-011-5689-5Rhim, J.-W., Hong, S.-I., Park, H.-M., & Ng, P. K. W. (2006). Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 54(16), 5814-5822. doi:10.1021/jf060658hKenawy, E.-R., Worley, S. D., & Broughton, R. (2007). The Chemistry and Applications of Antimicrobial Polymers:  A State-of-the-Art Review. Biomacromolecules, 8(5), 1359-1384. doi:10.1021/bm061150qDobon, A., Cordero, P., Kreft, F., Østergaard, S. R., Antvorskov, H., Robertsson, M., … Hortal, M. (2011). The sustainability of communicative packaging concepts in the food supply chain. A case study: part 2. Life cycle costing and sustainability assessment. The International Journal of Life Cycle Assessment, 16(6), 537-547. doi:10.1007/s11367-011-0291-
    corecore