16 research outputs found

    Sequential Processing of Cold Gas Sprayed Alloys by Milling and Deep Rolling

    No full text
    Cold gas spraying (CS) is a solid-state material deposition process which, in addition to the flexible repair of individual component areas, also enables the build-up of larger samples. The layers are created on a substrate by the impact-induced bonding of highly accelerated micrometer particles. Since melting does not occur, the material composition can be varied flexibly and independently of material-specific melting points. In this work, the influence of the described forming process on subsequent machining by milling and deep rolling is investigated. The process forces measured during milling and the surface topography after milling and deep rolling were influenced by the material composition and the CS-related properties, e.g., high material hardness or particle bonding. In contrast to prior assumptions, deep rolling was shown to have no influence on the determined hardness depth profile for the investigated materials. Future work will focus on additional analyses, such as the determination of half-widths, to obtain further insight on the material behavior

    Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks

    No full text
    During early postnatal development, sensory regions of the brain undergo periods of heightened plasticity which sculpt neural networks and lay the foundation for adult sensory perception. Such critical periods were also postulated for learning and memory but remain elusive and poorly understood. Here, we present evidence that the activity-regulated and memory-linked gene Arc/Arg3.1 is transiently up-regulated in the hippocampus during the first postnatal month. Conditional removal of Arc/Arg3.1 during this period permanently alters hippocampal oscillations and diminishes spatial learning capacity throughout adulthood. In contrast, post developmental removal of Arc/Arg3.1 leaves learning and network activity patterns intact. Long-term memory storage continues to rely on Arc/Arg3.1 expression throughout life. These results demonstrate that Arc/Arg3.1 mediates a critical period for spatial learning, during which Arc/Arg3.1 fosters maturation of hippocampal network activity necessary for future learning and memory storage
    corecore