346 research outputs found

    Local Axisymmetric Diffusive Stability of Weakly-Magnetized, Differentially-Rotating, Stratified Fluids

    Full text link
    We study the local stability of stratified, differentially-rotating fluids to axisymmetric perturbations in the presence of a weak magnetic field and of finite resistivity, viscosity and heat conductivity. This is a generalization of the Goldreich-Schubert-Fricke (GSF) double-diffusive analysis to the magnetized and resistive, triple-diffusive case. Our fifth-order dispersion relation admits a novel branch which describes a magnetized version of multi-diffusive modes. We derive necessary conditions for axisymmetric stability in the inviscid and perfect-conductor (double-diffusive) limits. In each case, rotation must be constant on cylinders and angular velocity must not decrease with distance from the rotation axis for stability, irrespective of the relative strength of viscous, resistive and heat diffusion. Therefore, in both double-diffusive limits, solid body rotation marginally satisfies our stability criteria. The role of weak magnetic fields is essential to reach these conclusions. The triple-diffusive situation is more complex, and its stability criteria are not easily stated. Numerical analysis of our general dispersion relation confirms our analytic double-diffusive criteria, but also shows that an unstable double-diffusive situation can be significantly stabilized by the addition of a third, ostensibly weaker, diffusion process. We describe a numerical application to the Sun's upper radiative zone and establish that it would be subject to unstable multi-diffusive modes if moderate or strong radial gradients of angular velocity were present.Comment: 29 pages, 1 table, accepted for publication in Ap

    How to observe a non-Kerr spacetime

    Full text link
    We present a generic criterion which can be used in gravitational-wave data analysis to distinguish an extreme-mass-ratio inspiral into a Kerr background spacetime from one into a non-Kerr background spacetime. The criterion exploits the fact that when an integrable system, such as the system that describes geodesic orbits in a Kerr spacetime, is perturbed, the tori in phase space which initially corresponded to resonances disintegrate so as to form the so called Birkhoff chains on a surface of section, according to the Poincar\'{e}-Birkhoff theorem. The KAM curves of these islands in such a chain share the same ratio of frequencies, even though the frequencies themselves vary from one KAM curve to another inside an island. On the other hand, the KAM curves, which do not lie in a Birkhoff chain, do not share this characteristic property. Such a temporal constancy of the ratio of frequencies during the evolution of the gravitational-wave signal will signal a non-Kerr spacetime which could then be further explored.Comment: 4 pages, 2 figure

    White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation

    Full text link
    White dwarfs inspiraling into black holes of mass \MBH\simgt 10^5M_\odot are detectable sources of gravitational waves in the LISA band. In many of these events, the white dwarf begins to lose mass during the main observational phase of the inspiral. The mass loss starts gently and can last for thousands of orbits. The white dwarf matter overflows the Roche lobe through the L1L_1 point at each pericenter passage and the mass loss repeats periodically. The process occurs very close to the black hole and the released gas can accrete, creating a bright source of radiation with luminosity close to the Eddington limit, L1043L\sim 10^{43}~erg~s1^{-1}. This class of inspirals offers a promising scenario for dual detections of gravitational waves and electromagnetic radiation.Comment: 5 pages, 3 figures. Minor changes. Accepted in MNRAS Letters on August 6 201

    FUSE Observations of the Dwarf Nova SW UMa During Quiescence

    Full text link
    We present spectroscopic observations of the short-period cataclysmic variable SW Ursa Majoris, obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite while the system was in quiescence. The data include the resonance lines of O VI at 1031.91 and 1037.61 A. These lines are present in emission, and they exhibit both narrow (~ 150 km/s) and broad (~ 2000 km/s) components. The narrow O VI emission lines exhibit unusual double-peaked and redshifted profiles. We attribute the source of this emission to a cooling flow onto the surface of the white dwarf primary. The broad O VI emission most likely originates in a thin, photoionized surface layer on the accretion disk. We searched for emission from H_2 at 1050 and 1100 A, motivated by the expectation that the bulk of the quiescent accretion disk is in the form of cool, molecular gas. If H_2 is present, then our limits on the fluxes of the H_2 lines are consistent with the presence of a surface layer of atomic H that shields the interior of the disk. These results may indicate that accretion operates primarily in the surface layers of the disk in SW UMa. We also investigate the far-UV continuum of SW UMa and place an upper limit of 15,000 K on the effective temperature of the white dwarf.Comment: 21 Pages, 3 figures, to be published in Ap

    Analysis and Control of mortar Quality with ultrasonic wave attenuation

    Get PDF
    Wave propagation and attenuation on mortar material are discussed in this paper with a Non Destructive Testing (NDT) which can be used to characterize samples of mortars and effect of microstructure of sand in their hardening. Samples were manufactured using same water/cement ration (w/c) 0.65, and cement/sand ration (c/s) 0.5 in order to simulate the attenuation. The characterization of attenuation in mortar material has been performed by ultrasonic reflection technique using a transducer with central frequency 0.5MHz. It is shown that sand particle size exercises significant influence on the evolution of attenuation, the attenuation parameters give information about average state of the hardening of the mortar itself

    The Origin of Solar Activity in the Tachocline

    Full text link
    Solar active regions, produced by the emergence of tubes of strong magnetic field in the photosphere, are restricted to within 35 degrees of the solar equator. The nature of the dynamo processes that create and renew these fields, and are therefore responsible for solar magnetic phenomena, are not well understood. We analyze the magneto-rotational stability of the solar tachocline for general field geometry. This thin region of strong radial and latitudinal differential rotation, between the radiative and convective zones, is unstable at latitudes above 37 degrees, yet is stable closer to the equator. We propose that small-scale magneto-rotational turbulence prevents coherent magnetic dynamo action in the tachocline except in the vicinity of the equator, thus explaining the latitudinal restriction of active regions. Tying the magnetic dynamo to the tachocline elucidates the physical conditions and processes relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ

    On the evolution of the radio pulsar PSR J1734−3333

    Get PDF
    Recent measurements showed that the period derivative of the ‘hig h-B’ radio pulsar PSR J1734−3333 is increasing with time. For neutron stars evolving with fallback disks, this rotational behavior is expected in certain phases of the long-term evolution. Using the same model as employed earlier to explain the evolution of anomalous X-ray pulsars and soft gamma-ray repeaters, we show that the period,the first and second period derivatives and the X-ray luminosity of this source can simultaneously acquire the observed values for a neutron star evolving with a fallback disk. We find that the required strength of the dipole field that can produce the source properties is in the range of 10^12 − 10^13 G on the pole of the neutron star. When the model source reaches the current state properties of PSR J1734−3333, accretion onto the star has not started yet, allowing the source to operate as a regular radio pulsar. Our results imply that PSR J1734−3333 is at an age of ∼3×10^4 −2×10^5years. Such sources will have properties like the X-ray dim isolated neutron stars or transient AXPs at a later epoch of weak accretion from the diminished fallback disk

    The Giant X-Ray Flare of NGC 5905: Tidal Disruption of a Star, a Brown Dwarf, or a Planet?

    Get PDF
    We model the 1990 giant X-ray flare of the quiescent galaxy NGC 5905 as the tidal disruption of a star by a supermassive black hole. From the observed rapid decline of the luminosity, over a timescale of a few years, we argue that the flare was powered by the fallback of debris rather than subsequent accretion via a thin disk. The fallback model allows constraints to be set on the black hole mass and the mass of debris. The latter must be very much less than a solar mass to explain the very low luminosity of the flare. The observations can be explained either as the partial stripping of the outer layers of a low-mass main sequence star or as the disruption of a brown dwarf or a giant planet. We find that the X-ray emission in the flare must have originated within a small patch rather than over the entire torus of circularized material surrounding the black hole. We suggest that the patch corresponds to the ``bright spot'' where the stream of returning debris impacts the torus. Interestingly, although the peak luminosity of the flare was highly sub-Eddington, the peak flux from the bright spot was close to the Eddington limit. We speculate on the implications of this result for observations of other flare events.Comment: 25 pages, including 5 figure
    corecore