4,537 research outputs found

    A quantitative evaluation of metallic conduction in conjugated polymers

    Get PDF
    As the periodicity in crystalline materials creates the optimal condition for electronic delocalization, one might expect that in partially crystalline conjugated polymers delocalization is impeded by intergrain transport. However, for the best conducting polymers this presumption fails. Delocalization is obstructed by interchain rather than intergrain charge transfer and we propose a model of weakly coupled disordered chains to describe the physics near the metal-insulator transition. Our quantitative calculations match the outcome of recent broad-band optical experiments and provide a consistent explanation of metallic conduction in polymers.Comment: 4 pages incl. 3 figure

    Surface melting of the vortex lattice

    Full text link
    We discuss the effect of an (ab)-surface on the melting transition of the pancake-vortex lattice in a layered superconductor within a density functional theory approach. Both discontinuous and continuous surface melting are predicted for this system, although the latter scenario occupies the major part of the low-field phase diagram. The formation of a quasi-liquid layer below the bulk melting temperature inhibits the appearance of a superheated solid phase, yielding an asymmetric hysteretic behavior which has been seen in experiments.Comment: 4 pages, 3 figure

    Surface Melting of the Vortex Lattice in Layered Superconductors: Density Functional Theory

    Full text link
    We study the effects of an abab-surface on the vortex-solid to vortex-liquid transition in layered superconductors in the limit of vanishing inter-layer Josephson coupling. We derive the interaction between pancake vortices in a semi-infinite sample and adapt the density functional theory of freezing to this system. We obtain an effective one-component order-parameter theory which can be used to describe the effects of the surface on vortex-lattice melting. Due to the absence of protecting layers in the neighbourhood of the surface, the vortex lattice formed near the surface is more susceptible to thermal fluctuations. Depending on the value of the magnetic field, we predict either a continuous or a discontinuous surface melting transition. For intermediate values of the magnetic field, the surface melts continuously, assisting the formation of the liquid phase and suppressing hysteresis above the melting transition, a prediction consistent with experimental results. For very low and very high magnetic fields, the surface melts discontinuously. The two different surface melting scenarios are separated by two surface multicritical points, which we locate on the melting line.Comment: 16 pages, 12 figure
    • …
    corecore