As the periodicity in crystalline materials creates the optimal condition for
electronic delocalization, one might expect that in partially crystalline
conjugated polymers delocalization is impeded by intergrain transport. However,
for the best conducting polymers this presumption fails. Delocalization is
obstructed by interchain rather than intergrain charge transfer and we propose
a model of weakly coupled disordered chains to describe the physics near the
metal-insulator transition. Our quantitative calculations match the outcome of
recent broad-band optical experiments and provide a consistent explanation of
metallic conduction in polymers.Comment: 4 pages incl. 3 figure