8,363 research outputs found

    A novel model for one-dimensional morphoelasticity. Part I - Theoretical foundations

    Get PDF
    While classical continuum theories of elasticity and viscoelasticity have long been used to describe the mechanical behaviour of solid biological tissues, they are of limited use for the description of biological tissues that undergo continuous remodelling. The structural changes to a soft tissue associated with growth and remodelling require a mathematical theory of ‘morphoelasticity’ that is more akin to plasticity than elasticity. However, previously-derived mathematical models for plasticity are difficult to apply and interpret in the context of growth and remodelling: many important concepts from the theory of plasticity do not have simple analogues in biomechanics.\ud \ud In this work, we describe a novel mathematical model that combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. While our focus here is on one-dimensional problems, our model builds on earlier work based on the multiplicative decomposition of the deformation gradient and can be adapted to develop a three-dimensional theory. The foundation of this work is the concept of ‘effective strain’, a measure of the difference between the current state and a hypothetical state where the tissue is mechanically relaxed. We develop one-dimensional equations for the evolution of effective strain, and discuss a number of potential applications of this theory. One significant application is the description of a contracting fibroblast-populated collagen lattice, which we further investigate in Part II

    A novel model for one-dimensional morphoelasticity. Part II - Application to the contraction of fibroblast-populated collagen lattices

    Get PDF
    Fibroblast-populated collagen lattices are commonly used in experiments to study the interplay between fibroblasts and their pliable environment. Depending on the method by which\ud they are set, these lattices can contract significantly, in some cases contracting to as little as 10% of their initial lateral (or vertical) extent. When the reorganisation of such lattices by fibroblasts is interrupted, it has been observed that the gels re-expand slightly but do not return to their original size. In order to describe these phenomena, we apply our theory of one-dimensional morphoelasticity derived in Part I to obtain a system of coupled ordinary differential equations, which we use to describe the behaviour of a fibroblast-populated collagen lattice that is tethered by a spring of known stiffness. We obtain approximate solutions that describe the behaviour of the system at short times as well as those that are valid for long times. We also obtain an exact description of the behaviour of the system in the case where the lattice reorganisation is interrupted. In addition, we perform a perturbation analysis in the limit of large spring stiffness to obtain inner and outer asymptotic expansions for the solution, and examine the relation between force and traction stress in this limit. Finally, we compare predicted numerical values for the initial stiffness and viscosity of the gel with corresponding values for previously obtained sets of experimental data and also compare the qualitative behaviour with that of our model in each case. We find that our model captures many features of the observed behaviour of fibroblast-populated collagen lattices

    Studies on the toxic elements and organic degradation products in aquatic bodies and sediments around Kennedy Space Center (KSC) Haulover Canal and Mosquito Lagoon

    Get PDF
    The work during the first year ending September, 1975, is reported. Indian River, Haulover Canal, Mosquito Lagoon, and other aquatic areas of discharge around Kennedy Space Center (KSC) were studied. The presentation and interpretation of data on water and sediment samples collected from Haulover Canal and Mosquito Lagoon are included. The field and laboratory data are presented and tentative conclusions were drawn in the various aspects of the study. An attempt was made to correlate the physical, chemical, and biological parameters

    Studies on the toxic elements and organic degradation products in aquatic bodies and sediments around Kennedy Space Center (KSC) South Mosquito lagoon

    Get PDF
    A compilation was put together of research work performed on the aquatic systems around Kennedy Space Center (KSC). The report includes a brief description of the study area, field data and analytical results of all the samples collected during the five visits to KSC up to December 17, 1977. The aquatic area selected for the study is the Southern part of Mosquito Lagoon which extends from the Haulover Canal to the dead end boundary of this lagoon southwards

    Vacancy-mediated mechanism of nitrogen substitution in carbon nanotubes

    Get PDF
    Nitrogen substitution reaction in a graphene sheet and carbon nanotubes of different diameter are investigated using the generalized tight-binding molecular dynamics method. The formation of a vacancy in curved graphene sheet or a carbon nanotube is found to cause a curvature dependent local reconstruction of the surface. Our simulations and analysis show that vacancy mediated N substitution (rather than N chemisorption) is favored on the surface of nanotubes with diameter larger than 8 nm. This predicted value of the critical minimum diameter for N incorporation is confirmed by experimental results presented on nitrogen-doped multiwalled nanotubes with [approximate]5 at. % nitrogen prepared by the thermal chemical vapor deposition process

    Size Effect on the Electrical Resistivity of Aluminium, Indium and Thallium Films

    Get PDF

    Marine Biodiversity: Conservation and management-Introduction

    Get PDF
    There has been a realisation in the latter part of twentieth century on the imperative need to protect and conserve the habitats and their resources. In the Biodiversity convention at the UN Conference on Environment and Development (UNCED) the term biodiversity is defined as "the variability among living organisms from all sources including inter alia, terrestial, marine and other ecosystems and the ecological complexes of which they are part, this includes diversity within species, between species and of ecosystems.
    corecore