36 research outputs found

    The dynamic influence of microbial mats on sediments: fluid escape and pseudofossil formation in the Ediacaran Longmyndian Supergroup, UK

    Get PDF
    <p>Microbial mats are thought to have been widespread in marine settings before the advent of bioturbation, and the range of their influence on sediments is gradually becoming recognized. We propose that mat sealing can dynamically affect porewater conditions, and allow the build-up of overpressure that can drive dewatering and degassing to produce a suite of atypical fluid-escape features. Finely bedded silty and sandy laminae from the <em>c</em>. 560 Ma Burway Formation of the Longmyndian Supergroup, Shropshire, England, reveal evidence for sediment injection, including disrupted bedding, clastic injections, sill-like features and sediment volcanoes at sub-millimetre scale. These features are associated with crinkly laminae diagnostic of microbial matgrounds. Matground-associated sediment injection can explain the formation of several types of enigmatic discoidal impressions, common in rocks of this age, which have previously been attributed to the Ediacaran macrobiota. Serial grinding of Longmyndian forms previously described as <em>Medusinites</em> aff. <em>asteroides</em> and <em>Beltanelliformis</em> demonstrates that such discoidal features can be fully explained by fluid escape and associated load structures. Our observations emphasize the non-actualistic nature of shallow-marine Ediacaran sediments. Matground-associated sediment injection features provide a new insight into the interpretation of Proterozoic rocks and the biogenicity of their enigmatic discoidal markings. </p

    Occurrence of thermophilic Campylobacter spp. in pigs and the assessment of biosecurity measures employed at unorganized pig farms in Thrissur, Kerala

    Get PDF
    Campylobacter spp. is considered as one of the major causes of foodborne illnesses worldwide. A total of 130 samples including faecal samples (n=40), rectal swabs (n=40) and sewage samples (n=50) were collected from the two unorganized pig farms to study the occurrence of Campylobacter spp. The biosecurity measures on the farms were also assessed. An overall occurrence of 26.15 per cent with a higher rate of isolation from rectal swabs (57.5 per cent) than faecal and sewage samples (25 per cent and 2 per cent) were observed. The occurrence of C. coli was found to be 55 per cent, while that of C. jejuni and C. coli was 5 per cent in rectal swabs collected from Farm A. Campylobacter coli could be isolated only from the sewage sample from farm B. Direct multiplex PCR screening detected C. coli in 32 per cent and 44 per cent of sewage samples from farms A and B, respectively. This indicates that the Campylobacter organisms in sewage samples might have attained viable but not culturable form. In both farms, no effective biosecurity measures were followed. The lack of biosecurity measures in farms contributes to the transmission of Campylobacter spp. from the environment to the animals. Farm workers of both the farms were unaware of hygienic practices and biosecurity measures. Furthermore, little attention was paid to personal protective measures, which could pose a significant occupational risk of contracting campylobacteriosis, resulting in complex sequelae

    The arrangement of possible muscle fibres in the Ediacaran taxon <i>Haootia quadriformis</i>

    Get PDF
    Haootia quadriformis from Newfoundland, Canada, is one of the most unusual impressions of a soft-bodied macro-organism yet described from the late Ediacaran Period. Interpreted as a metazoan of cnidarian grade, the body impression of H. quadriformis possesses features interpreted as fibrous structures that represent possible evidence for muscular tissue. Evidence both in support of and against a relationship between H. quadriformis and the Staurozoa, one of the cnidarian groups to which Haootia was compared in Liu et al., is outlined by Miranda et al.. Our intention in our original paper was to illustrate the staurozoan body plan for comparative purposes, rather than suggest homology or direct ancestry. Nevertheless, fresh insights from workers with expertise in the biology of extant cnidarians are welcomed

    Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma).

    Get PDF
    Muscle tissue is a fundamentally eumetazoan attribute. The oldest evidence for fossilized muscular tissue before the Early Cambrian has hitherto remained moot, being reliant upon indirect evidence in the form of Late Ediacaran ichnofossils. We here report a candidate muscle-bearing organism, Haootia quadriformis n. gen., n. sp., from approximately 560 Ma strata in Newfoundland, Canada. This taxon exhibits sediment moulds of twisted, superimposed fibrous bundles arranged quadrilaterally, extending into four prominent bifurcating corner branches. Haootia is distinct from all previously published contemporaneous Ediacaran macrofossils in its symmetrically fibrous, rather than frondose, architecture. Its bundled fibres, morphology, and taphonomy compare well with the muscle fibres of fossil and extant Cnidaria, particularly the benthic Staurozoa. Haootia quadriformis thus potentially provides the earliest body fossil evidence for both metazoan musculature, and for Eumetazoa, in the geological record.We gratefully acknowledge a NERC doctoral studentship to AGL while at the University of Oxford; a Burdett Coutts grant to JJM; and support from the Cambridge Philosophical Society and National Geographic Global Exploration Fund (GEFNE22-11) to AGL.This is the final published version. It was originally published here: http://rspb.royalsocietypublishing.org/content/281/1793/20141202.short?rss=1

    Understanding ancient life: how Martin Brasier changed the way we think about the fossil record

    Get PDF
    Crucial to our understanding of life on Earth is the ability to judge the validity of claims of very ancient ‘fossils’. Martin Brasier's most important contribution to this debate was to establish a framework within which to discuss claims of the ‘oldest’ life. In particular, he made it clear that the burden of proof must fall on those making the claim of ancient life, not those refuting it. This led to his formulation of the concept of the continuum of morphologies produced by life and non-life and the considerable challenges of differentiating biogenesis from abiogenesis. Martin Brasier developed a set of criteria for distinguishing life from non-life and extended the use of many new high-resolution analytical techniques to palaeontological research. He was also renowned for his work on the Cambrian explosion and the origin of animals. Although he had spent much of his early career working on the geological context of these events, it was not until he returned to studying the Ediacaran and Cambrian periods in his later years that he began to apply this null hypothesis way of thinking to these other major transitions in the history of life. This led to him becoming involved in the development of a series of nested null hypotheses, his ‘cone of contention’, to analyse enigmatic fossils more generally. In short, Martin Brasier taught us how to formulate biological hypotheses in deep time, established the rules for how those hypotheses should be tested and championed a host of novel analytical techniques to gather the data required. As a consequence, future discussions of enigmatic specimens and very old fossils will be greatly enriched by his contributions

    U–Pb zircon-rutile dating of the Llangynog Inlier, Wales: constraints on an Ediacaran shallow marine fossil assemblage from East Avalonia

    Get PDF
    The Llangynog Inlier of south Wales contains an assemblage of Ediacaran macrofossils from a shallow-marine environment, including discoidal morphs of Aspidella and rare examples of Hiemalora, Palaeopascichnus and Yelovichnus. These are taxa found in other sites in the Avalonian microcontinent (e.g. Charnwood Forest and eastern Newfoundland) and in the younger White Sea Ediacaran assemblages. As the Charnwood fossils reflect a deep-water environment, and no macrofossils have been found in the Ediacaran rocks of the Long Mynd, the fossils of the Llangynog Inlier represent a unique glimpse of shallow marine life in southern Britain (East Avalonia). However, the lack of absolute age constraints has hampered direct comparison with other assemblages. Here, we report in-situ zircon and rutile U–Pb dates from a rhyolitic ash-flow layer of the Coed Cochion Volcaniclastic Member, Llangynog Inlier, which constrains the age of the fossiliferous strata. A weighted mean single grain zircon ID-TIMS U–Pb age of 564.09 ± 0.70 Ma is interpreted as the rhyolite's crystallisation age. This age is consistent with in-situ LA-ICPMS zircon and rutile U–Pb dating. The Llangynog age temporally correlates these fossils to dated horizons within East Avalonia at the Beacon Hill Formation, Charnwood (565.22 ± 0.89 Ma), and the Stretton Shale Formation, Long Mynd (566.6 ± 2.9 Ma). Correlations to West Avalonia include the time-equivalent Fermeuse Formation, St Johnñ€ℱs Group, eastern Newfoundland (564.13 ± 0.65 Ma). The data presented here establish the biota of the Llangynog Inlier as a lateral equivalent to the similarly shallow marine, tidally influenced ecosystem of the upper Fermeuse Formation. Intra-terrane depositional environmental variability also affects what is preserved in Avalonian fossil sites. Further, time-constrained geochemical data reinforce the Llangynog Inlier's classification within the Wrekin Terrane

    Mechanisms Underlying Insulin Deficiency-Induced Acceleration of ÎČ-Amyloidosis in a Mouse Model of Alzheimer's Disease

    Get PDF
    Although evidence is accumulating that diabetes mellitus is an important risk factor for sporadic Alzheimer's disease (AD), the mechanisms by which defects in insulin signaling may lead to the acceleration of AD progression remain unclear. In this study, we applied streptozotocin (STZ) to induce experimental diabetes in AD transgenic mice (5XFAD model) and investigated how insulin deficiency affects the ÎČ-amyloidogenic processing of amyloid precursor protein (APP). Two and half months after 5XFAD mice were treated with STZ (90 mg/kg, i.p., once daily for two consecutive days), they showed significant reductions in brain insulin levels without changes in insulin receptor expression. Concentrations of cerebral amyloid-ÎČ peptides (AÎČ40 and AÎČ42) were significantly increased in STZ-treated 5XFAD mice as compared with vehicle-treated 5XFAD controls. Importantly, STZ-induced insulin deficiency upregulated levels of both ÎČ-site APP cleaving enzyme 1 (BACE1) and full-length APP in 5XFAD mouse brains, which was accompanied by dramatic elevations in the ÎČ-cleaved C-terminal fragment (C99). Interestingly, BACE1 mRNA levels were not affected, whereas phosphorylation of the translation initiation factor eIF2α, a mechanism proposed to mediate the post-transcriptional upregulation of BACE1, was significantly elevated in STZ-treated 5XFAD mice. Meanwhile, levels of GGA3, an adapter protein responsible for sorting BACE1 to lysosomal degradation, are indistinguishable between STZ- and vehicle-treated 5XFAD mice. Moreover, STZ treatments did not affect levels of AÎČ-degrading enzymes such as neprilysin and insulin-degrading enzyme (IDE) in 5XFAD brains. Taken together, our findings provide a mechanistic foundation for a link between diabetes and AD by demonstrating that insulin deficiency may change APP processing to favor ÎČ-amyloidogenesis via the translational upregulation of BACE1 in combination with elevations in its substrate, APP

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The dynamic influence of microbial mats on sediments: fluid escape and pseudofossil formation in the Ediacaran Longmyndian Supergroup, UK

    No full text
    Microbial mats are thought to have been widespread in marine settings before the advent of bioturbation, and the range of their influence on sediments is gradually becoming recognized. We propose that mat sealing can dynamically affect porewater conditions, and allow the build-up of overpressure that can drive dewatering and degassing to produce a suite of atypical fluid-escape features. Finely bedded silty and sandy laminae from the c. 560 Ma Burway Formation of the Longmyndian Supergroup, Shropshire, England, reveal evidence for sediment injection, including disrupted bedding, clastic injections, sill-like features and sediment volcanoes at sub-millimetre scale. These features are associated with crinkly laminae diagnostic of microbial matgrounds. Matground-associated sediment injection can explain the formation of several types of enigmatic discoidal impressions, common in rocks of this age, which have previously been attributed to the Ediacaran macrobiota. Serial grinding of Longmyndian forms previously described as Medusinites aff. asteroides and Beltanelliformis demonstrates that such discoidal features can be fully explained by fluid escape and associated load structures. Our observations emphasize the non-actualistic nature of shallow-marine Ediacaran sediments. Matground-associated sediment injection features provide a new insight into the interpretation of Proterozoic rocks and the biogenicity of their enigmatic discoidal markings
    corecore