25 research outputs found

    Adventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: Implications for general fluid flow models on volcanoes

    Get PDF
    International audienceOn March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents. Two days after the explosion, a new vapour emission was discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called "Nel Cannestrà". This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO2 soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10-15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow, with a temperature close to the water boiling point (76 °C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 °C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestrà, at ~ 500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO2 soil diffuse degassing measurements suggest in this sector at slightly lower elevation from the block impact crater a magmatic and hydrothermal fluid rising system along the N41° regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary down to the block impact crater displayed a flank fluid flow apparently connected to a deeper system. The concept of shallow hydrothermal level have been compared to similar ERT results recently obtained on Mount Etna and La Fossa cone of Vulcano. This information needs to be taken into account in general fluid flow models on volcanoes. In particular, peripheral thermal waters (as those bordering the north-eastern coast of Stromboli) could be contaminated by hydrothermal and magmatic fluids coming from regional faults but also from the summit

    Single-molecule kinetics of pore assembly by the membrane attack complex

    Get PDF
    The membrane attack complex (MAC) is a hetero-oligomeric protein assembly that kills pathogens by perforating their cell envelopes. The MAC is formed by sequential assembly of soluble complement proteins C5b, C6, C7, C8 and C9, but little is known about the rate-limiting steps in this process. Here, we use rapid atomic force microscopy (AFM) imaging to show that MAC proteins oligomerize within the membrane, unlike structurally homologous bacterial pore-forming toxins. C5b-7 interacts with the lipid bilayer prior to recruiting C8. We discover that incorporation of the first C9 is the kinetic bottleneck of MAC formation, after which rapid C9 oligomerization completes the pore. This defines the kinetic basis for MAC assembly and provides insight into how human cells are protected from bystander damage by the cell surface receptor CD59, which is offered a maximum temporal window to halt the assembly at the point of C9 insertion

    Ground-based electromagnetic studies combined with remote sensing based on Demeter mission: A way to monitor active faults and volcanoes

    No full text
    International audienceThe identification of magnetic, electric and electromagnetic (EM) precursory signals related to volcanic activities and earthquakes is still a matter of debate. Some examples are now well established, but they are often based on a few parameters recorded on sparse equipments and with no multi-disciplinary approach. Demeter program takes into account a more complete approach of EM phenomena related to volcanic eruptions and earthquakes, by combining both ground-based and satellite EM monitoring, from direct current to several kilohertz, i.e. from ULF, ELF to VLF frequency domains. The research program stands in two parts: one is the identification of EM signals at the satellite altitude and the other consists in detailed studies in a few pilot sites on the ground. Two main test sites have been considered: La Fournaise volcano in Réunion Island and the seismogenic Corinth rift in Greece. Both sites allow for performing EM studies in a multi-disciplinary environment. La Fournaise volcano erupts on average two times a year. The self-recording Demeter EM station is composed of three modules measuring the components of the magnetic and electric fields in three different frequency domains: DC to 0.5 Hz, 0.0033–160 Hz and 8–10 kHz. Preliminary observations made during the May 2003 eruption show that electric and magnetic signals appeared before the eruption. Some signals present sharp step-like variations, with amplitudes up to several hundreds mV per km and a few hour duration, followed by periods with a higher spectral frequency content. The frequency of these signals can be of several tens of Hz. The Corinth rift is a highly seismic area, frequently affected by seismic swarms. In 2004 the region has experienced tens of earthquakes of magnitude less than 4.6. A Demeter station has been set up on the Trizonia Island along the northern mainland coast, where a 30 km long seismic gap has been identified. The station is composed of two modules recording the three components of the magnetic field and the two horizontal components of the electric field in the ULF and ELF–VLF frequency bands. The audiomagnetotelluric soundings show that the station is close to a regional conductive fault connected to the sea. The first 4 months of observation clearly show that 29 earthquakes, even of low magnitude (Mgreater-or-equal, slanted2.8), occurring at less than 140 km of distance of the station, have generated electric signals when the seismic waves have passed the EM station. For a given magnitude of the earthquake, the energy of the electric signal is independent of the distance between the focal source and the EM station, which points out local electric source mechanisms. The greater the magnitude of the earthquake, the greater is the energy of the electric signal is. The co-seismic electric signals have the same morphology as that of the passing seismic wave, and there is no noticeable time delay between the electric and the seismic signals. This simultaneity between the seismic and the electric signal is best explained by the generation of an electrokinetic effect due to the passage of the seismic wave through the seawater-saturated ground

    Partnerships for innovation: The case of Urban living lab in Turin

    No full text
    Cities are experiencing complex problem such as rapid urbanization, ageing, increased social inequalities, pollution and climate change. Local policymakers are called to handle those challenges with limited resources, increased economic constraints and without the appropriate policy tools. Urban Living Labs can be a useful strategy to deal with multidimensional problems because they engage local actors in experimenting innovative solutions. Urban Living Labs are, in fact, local spaces where municipalities, citizens, and stakeholders define, develop and test innovative products or services, using an open and collaborative approach to innovation, aimed at eliciting knowledge from participants. This chapter investigates how partnerships for ULL are created and managed at the local level, and for the benefit of whom. It analyses the case of the Turin Living Lab created by the Municipality of Turin in 2016 and transformed into Turin City Lab in 2019

    Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    Get PDF
    Brothelande, E. et. al.In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus potentially prone to gravitational landslides. Lastly, while self-potential and temperature data suggest that widespread hydrothermal circulation occurs throughout almost all of the caldera, and possibly beyond, the most active parts of this hydrothermal system are associated with the dome. The presence of this active hydrothermal system is the clearest indicator that these methods can provide of a potential shallow magmatic body underneath the domeThis research was co-financed by the French Government “ANR ARC-Vanuatu: Programme Catastrophes Telluriques et Tsunamis” (ANR-06-CATT-02) and Laboratory of Excellence initiative n°ANR-10-LABX-0006, the Laboratoire Magmas et Volcans (LMV), the Laboratoire GéoSciences Réunion, the Région Auvergne and the European Regional Development Fund. Datasets are available at LMV. In addition, gravimetric data are available at International Gravimetric Bureau. This is Laboratory of Excellence ClerVolc contribution number 171 and IPGP contribution number 3654.Peer reviewe

    Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    No full text
    International audienceIn this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus potentially prone to gravitational landslides. Lastly, while self-potential and temperature data suggest that widespread hydrothermal circulation occurs throughout almost all of the caldera, and possibly beyond, the most active parts of this hydrothermal system are associated with the dome. The presence of this active hydrothermal system is the clearest indicator that these methods can provide of a potential shallow magmatic body underneath the dome
    corecore