63 research outputs found

    Eliciting Uncertain Resilience Information for Risk Mitigation

    Get PDF
    The literature of risk, mitigation, and resilience is rich in classifications and recommendations. The missing link is evaluation: ideally, data based; initially, based on expert judgment. We present a novel approach for eliciting probability distributions describing mitigation effectiveness. This approach can be used by subject matter experts (SMEs) who are not specialists in mathematics or engineering. A visual interface permits each expert to sketch a distribution by moving five colored dots on the user interface. The engine can weight and combine estimates from several SMEs into an aggregate density function suitable for presentation, and an aggregate cumulated distribution for use in Monte Carlo simulations. Additional supporting software adapts the tool for real-time support of virtual Delphi-type sessions involving multiple distributed experts. Use of the tool in a study aimed at controlling information and communication technology supply chain risks yields valuable information on those threats, and on the tool itself

    DIAFILTRATION OF ULTRAFILTRATION RETENTATE OF WHEY FROM WHITE BRINED CHEESE

    Get PDF
    Whey diafiltration was carried out with a UF25-PAN polyacrylnitrilic membrane with 25 kDa molecular weight cut-off at volume reduction factors (VRF) VRF=2, VRF=4, VRF=6, VRF=8, VRF=10. The values of the principal components dry matter, protein, lactose and mineral substances in the retentates and permeate obtained were established. The relative shares of protein, lactose and mineral substances in the dry matter, the concentration factor (CF) values for dry matter, protein, lactose and mineral substances, and the protein retention factor (RF) were determined. Linear models were created for the CF of each investigated component according to the VRF, and a logarithmic model was developed for the protein RF according to the VRF. The results obtained demonstrated the efficiency of diafiltration for deep treatment aimed at a further elimination of lactose and mineral substances and subsequent utilization of the diafiltration concentrates low in lactose and mineral substances as a liquid supplement in the manufacture of extruded cereal products

    Comparative study of quality characteristics of Kashkaval cheese from fresh and chilled curd

    Get PDF
    The influence of chilledcurd on Kashkavalcheese microbiological, functional, textural and sensorial characteristics was studied. It was found that salting the curd in a hot solution influenced to a greater degree the microflora reduction from the starter culture in Kashkaval cheese obtained fromfresh curd. In terms of species composition, Streptococcusssp. had a higher survival rate compared to Lactobacillusssp. During maturation, this trend changed and the number of Lactobacillusssp. increased, while that of Streptococcus ssp. remained constant and even slightly decreased in both studied samples. Melting and textural characteristics of the two studied cheese samples did not differ significantly at the end of the maturation process. The overall scores of the sensory profile were higher in the cheese obtained from fresh curd but no statistical differences (p>0.05) between separate sensory indices were established. The obtained results indicated that "Cagliata"can be successfully used as an alternative raw material for fresh curd in the production of Kashkaval cheese.publishedVersio

    Agricultural Academy

    Get PDF
    Abstract MENKOV, N. D., K. DINKOV, A. DURAKOVA and N. TOSHKOV, 2009. Sorption characteristics of buckwheat grain. Bulg. J. Agric. Sci., Moisture equilibrium data (adsorption and desorption) of buckwheat grain were determined using the static gravimetric method of saturated salt solutions at three temperatures 10, 25 and 40Β°C. The range of water activities for each temperature was between 0.11 and 0.85. Equilibrium moisture content decreased with increase in storage temperature at constant water activity. A suitable model was selected to describe the water sorption isotherms. The monolayer moisture content of the grain was estimated and the optimal storage water activity was proposed

    Project of Energy Supply of the URFU Observatory with a Res- Based Microgeneration Plant

    Full text link
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ пСрспСктивныС источники энСргии, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ вмСсто Π³ΠΎΡ€ΡŽΡ‡ΠΈΡ… ископаСмых; приводится Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ‚Π΅ΠΎΠ΄Π°Π½Π½Ρ‹Ρ… Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ обсСрватории; ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСтов для установки Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… источников энСргии Π½Π° ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π΅.The article discusses promising energy sources that can be used instead of fossil fuels; the analysis of meteorological data on the territory of the observatory is given; shows the results of calculations for the installation of alternative energy sources at the facility

    Π£Π ΠžΠ’ΠΠ˜ ΠžΠ‘Π›Π£Π§Π•ΠΠ˜Π― ΠŸΠΠ¦Π˜Π•ΠΠ’ΠžΠ’ И Π’ΠžΠ—ΠœΠžΠ–ΠΠ«Π• ПУВИ ΠžΠŸΠ’Π˜ΠœΠ˜Π—ΠΠ¦Π˜Π˜ ПЭВ-Π”Π˜ΠΠ“ΠΠžΠ‘Π’Π˜ΠšΠ˜ Π’ РОББИИ

    Get PDF
    This study presents an overview of the most common positron emission tomography examinations in Russia, as well as the acquisition protocols and patient doses. The data collection was performed in 2012–2017 in 19 positron emission tomography departments in 12 regions of the Russian Federation by questioning the staff. The majority of the Russian positron emission tomography departments were equipped by modern positron emission tomography scanners combined with computed tomography. In each investigated department, data on all types of positron emission tomography examinations, radiopharmaceuticals, administered activities used for standard patient (body mass 70Β±5 kg) and parameters of computed tomography protocols was collected. The effective doses of patients from combined positron emission computed tomography examinations were estimated as a sum of the dose from the internal exposure (injected radiopharmaceutical) and the external exposure (computed tomography scan). Whole body positron emission tomography examinations in Russia were commonly performed with 18F-fluorodeoxyglucose (18F-FDG), 18F-choline, 11Π‘-choline, 68GaPSMA, 68Ga-DOTA-TATE, 68Ga-DOTA-NOC, brain examinations – 18F-FDG, 11Π‘-metionine, 18F-choline, 18F-tyrosine, myocardial perfusion – 13N-ammonie.The highest patient effective doses (about 17 mSv) were observed for whole-body positron emission computed tomography examinations; for brain examinations – 3,4 – 4,8 mSv; for myocardial perfusion – 2,8 mSv. The computed tomography scan contributes up to 65 – 95% to the total patient effective dose for whole body examinations; 20 – 30% for head examinations. For the multiphase computed tomography scan effective doses may be increased to: 15 mSv for head examinations, 25 – 30 mSv for whole body examinations and 35 – 40 mSv for myocardial examinations. A standardization of acquisition and processing protocols is necessary for optimization of positron emission tomography examinations in Russia and for the intercomparison of results obtained in different positron emission tomography departments. Low dose computed tomography protocols, justification of diagnostic and multiphase computed tomography protocols, application of tube current modulation system and modern reconstruction algorithms, education and training of the staff in the field of radiation protection should be used for optimization of radiation protection of patient.Β Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½Ρ‹Ρ… эмиссионных томографичСских исслСдованиях, ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… Π² России, ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π°Ρ… сканирования ΠΈ Π΄ΠΎΠ·Π°Ρ… облучСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². Π‘Π±ΠΎΡ€ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ проводился ΠΏΡƒΡ‚Ρ‘ΠΌ анкСтирования пСрсонала ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΉ эмиссионной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 2012 ΠΏΠΎ 2017 Π³. ВсСго обслСдовано 19 ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΉ эмиссионной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΈΠ· 12 Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ, Π΄Π΅Π²ΡΡ‚ΡŒ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… оснащСны собствСнными отдСлСниями производства Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² ΠΈ Ρ€Π°Π΄ΠΈΠΎΡ„Π°Ρ€ΠΌΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ². ΠŸΠΎΡ‡Ρ‚ΠΈ всС отдСлСния ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΉ эмиссионной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π² России ΡƒΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚ΠΎΠ²Π°Π½Ρ‹ соврСмСнными ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΌΠΈ эмиссионными Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π°ΠΌΠΈ, совмСщСнными с рСнтгСновскими ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Ρ‹ для провСдСния Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΎΠ΄Π½ΠΎΠ³ΠΎ исслСдования. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠΎΠ±ΠΈΡ€Π°Π»Π°ΡΡŒ информация ΠΎ Π²ΠΈΠ΄Π°Ρ… исслСдований, примСняСмых Ρ€Π°Π΄ΠΈΠΎΡ„Π°Ρ€ΠΌΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… ΠΈ активностях, Π²Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… стандартному ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρƒ (масса Ρ‚Π΅Π»Π° 70 Β± 5 ΠΊΠ³), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠ² ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ томографичСского сканирования ΠΈ Π΄ΠΎΠ·Π°Ρ… облучСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ Π΄ΠΎΠ·Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌΠΈ Π·Π° ΠΎΠ΄Π½ΠΎ совмСщСнноС ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ΅ эмиссионноС ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ΅ томографичСскоС исслСдованиС, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ ΠΊΠ°ΠΊ сумма Π΄ΠΎΠ· Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ облучСния ΠΎΡ‚ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠΎΡ„Π°Ρ€ΠΌΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ внСшнСго рСнтгСновского облучСния ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΌ томографичСском сканировании. Богласно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ, Π² России проводятся исслСдования всСго Ρ‚Π΅Π»Π° с 18F-Ρ„Ρ‚ΠΎΡ€Π΄Π΅Π·ΠΎΠΊΡΠΈΠ³Π»ΡŽΠΊΠΎΠ·ΠΎΠΉ, 18F-Ρ…ΠΎΠ»ΠΈΠ½, 11Π‘-Ρ…ΠΎΠ»ΠΈΠ½, 68Ga-PSMA, 68Ga-DOTA-TATE, 68Ga-DOTA-NOC, исслСдования Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° с 18F-Π€Π”Π“, 11Π‘-ΠΌΠ΅Ρ‚ΠΈΠΎΠ½ΠΈΠ½, 18F-Ρ…ΠΎΠ»ΠΈΠ½, 18F-Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½, исслСдования ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° с 13N-Π°ΠΌΠΌΠΎΠ½ΠΈΠΉ. Π”ΠΎΠ·Ρ‹ облучСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ совмСщСнных исслСдований Π»Π΅ΠΆΠ°Ρ‚ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 3–40 ΠΌΠ—Π². НаибольшиС Π΄ΠΎΠ·Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ ΠΏΡ€ΠΈ исслСдовании всСго Ρ‚Π΅Π»Π° – ΠΎΠΊΠΎΠ»ΠΎ 17 ΠΌΠ—Π², ΠΏΡ€ΠΈ исслСдовании Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° – 3,4– 4,8 ΠΌΠ—Π², ΠΏΡ€ΠΈ исслСдовании ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° – 2,7 ΠΌΠ—Π². ΠŸΡ€ΠΈ этом ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ΅ томографичСскоС сканированиС вносит ΠΎΡ‚ 65% Π΄ΠΎ 95% Π² Π΄ΠΎΠ·Ρƒ облучСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈ исслСдовании всСго Ρ‚Π΅Π»Π° ΠΈ 20–30% ΠΏΡ€ΠΈ исслСдовании Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. ΠŸΡ€ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°Π·Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… томографичСских сканированиях с Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ контрастного вСщСства Π΄ΠΎΠ·Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π΄ΠΎ 15 ΠΌΠ—Π² ΠΏΡ€ΠΈ исслСдовании Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π΄ΠΎ 25–30 ΠΌΠ—Π² ΠΏΡ€ΠΈ исслСдовании всСго Ρ‚Π΅Π»Π° ΠΈ Π΄ΠΎ 35–40 ΠΌΠ—Π² ΠΏΡ€ΠΈ исслСдовании ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°. Для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ провСдСния ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½Ρ‹Ρ… эмиссионных исслСдований, сравнСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² Ρ€Π°Π·Π½Ρ‹Ρ… отдСлСниях ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΉ эмиссионной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ диагностичСской цСнности Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π² России Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° стандартизация ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠ² сбора ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ…. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° Π·Π° счёт использования Π½ΠΈΠ·ΠΊΠΎΠ΄ΠΎΠ·ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ томографичСского сканирования вмСсто диагностичСского, создания ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠ² для ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ примСнСния систСмы автоматичСской модуляции силы Ρ‚ΠΎΠΊΠ° (tube current modulation) ΠΈ соврСмСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² рСконструкции изобраТСния; обучСния мСдицинского пСрсонала тСхничСским ΠΏΡ€ΠΈΡ‘ΠΌΠ°ΠΌ сниТСния Π΄ΠΎΠ·Ρ‹ ΠΈ знаниям Π² области Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ бСзопасности

    Π‘ΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ исслСдования Π»Π΅Π³ΠΊΠΈΡ… Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠ΅ΠΉ, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ COVID-19

    Get PDF
    The coronavirus infection (COVID-19) is characterized by a high incidence of pneumonia. Extensive damage, high mortality associated with COVID-19 make the rapid bedside diagnosis and dynamic monitoring of the volume and nature of lung tissue damage a challenge. Lung ultrasound examination can be used as a tool to answer it.The objective: to compare the signs detected by lung computed tomography and ultrasound and to assess the sensitivity and specificity of ultrasound in the diagnosis of pneumonia induced by COVID-19.Subjects and Methods. The observational prospective clinical study included 388 patients aged 18–75 years old; they had a confirmed diagnosis of pneumonia caused by COVID-19 or suspected COVID-19. Lung ultrasound was performed within 24 hours after computed tomography (CT) of the chest organs. During CT, pathological signs, infiltration and consolidation of the lungs were visualized which were documented by lung segments. Lung ultrasound was performed according to the Russian Protocol, ultrasound signs of B-lines and consolidation were also documented based on the projection of lung segments on the chest wall. The distributions of variables was analyzed, described and summarized. The sensitivity and specificity of ultrasound methods were evaluated on the basis of ROC analysis according to CT gold standard.Results. Bilateral involvement was found in 100% of cases. Typical CT signs of pneumonia caused by coronavirus infection were ground-glass opacity of the pulmonary parenchyma, thickened pleura, consolidation, interstitium, reticular induration, and cobblestone appearance. With ultrasound examination of the lungs and pleura, the detected signs corresponded to CT signs. B lines (multifocal, discrete or merging) and consolidation of various volumes of lung tissue were most common during ultrasound. The sign of consolidation was detected less frequently versus infiltration (p < 0.001). The sensitivity of lung ultrasound in the diagnosis of lung lesions was 95.3%, and the specificity was 85.4%, the area under the curve was 0.976 with a confidence interval of 0.961–0.991 (p < 0.001).Conclusion. The use of lung ultrasound during the COVID-19 pandemic makes it possible to identify, assess the volume and nature of lung damage. Lung ultrasound demonstrated accuracy comparable to CT of the chest organs in detecting pneumonia in patients with COVID-19.ΠšΠΎΡ€ΠΎΠ½Π°Π²ΠΈΡ€ΡƒΡΠ½Π°Ρ инфСкция (COVID-19) характСризуСтся высокой частотой развития ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ. Π‘ΠΎΠ»ΡŒΡˆΠ°Ρ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ поврСТдСния, высокая Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ COVID-19 ставят Π·Π°Π΄Π°Ρ‡Ρƒ быстрой ΠΏΡ€ΠΈΠΊΡ€ΠΎΠ²Π°Ρ‚Π½ΠΎΠΉ диагностики ΠΈ динамичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° объСма ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° поврСТдСния Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π’Π°ΠΊΠΈΠΌ инструмСнтом стало ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ΅ исслСдованиС (Π£Π—Π˜) Π»Π΅Π³ΠΊΠΈΡ….ЦСль: сопоставлСниС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², выявляСмых ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (КВ) ΠΈ Π£Π—Π˜ Π»Π΅Π³ΠΊΠΈΡ…, ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ спСцифичности Π£Π—Π˜ Π² диагностикС ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ ΠΏΡ€ΠΈ COVID-19.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ обсСрвационноС проспСктивноС клиничСскоС исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ 388 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² возрастС 18–75 Π»Π΅Ρ‚ с ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π½Ρ‹ΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ COVID-19, ΠΈΠ»ΠΈ ΠΏΠΎΠ΄ΠΎΠ·Ρ€Π΅Π½ΠΈΠ΅ΠΌ Π½Π° COVID-19. Π£Π—Π˜ Π»Π΅Π³ΠΊΠΈΡ… выполняли Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 24 Ρ‡ послС провСдСния КВ ΠΎΡ€Π³Π°Π½ΠΎΠ² Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. ΠŸΡ€ΠΈ КВ опрСдСляли патологичСскиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ консолидации Π»Π΅Π³ΠΊΠΈΡ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ рСгистрировали ΠΏΠΎ сСгмСнтам Π»Π΅Π³ΠΊΠΈΡ…. Π£Π—Π˜ Π»Π΅Π³ΠΊΠΈΡ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ «русскому ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΡƒΒ», ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π’-Π»ΠΈΠ½ΠΈΠΉ ΠΈ консолидации Ρ‚Π°ΠΊΠΆΠ΅ рСгистрировали Π½Π° основании ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ сСгмСнтов Π»Π΅Π³ΠΊΠΈΡ… Π½Π° Π³Ρ€ΡƒΠ΄Π½ΡƒΡŽ стСнку. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· для описания ΠΈ обобщСния распрСдСлСний ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. ΠžΡ†Π΅Π½ΠΊΡƒ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, спСцифичности ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° основании ROC-Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠΎ Π·ΠΎΠ»ΠΎΡ‚ΠΎΠΌΡƒ стандарту КВ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ДвустороннСС Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π² 100% случаСв. Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ для ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ коронавирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ, Π½Π° КВ стали ΡƒΠΏΠ»ΠΎΡ‚Π½Π΅Π½ΠΈΠ΅ Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΡ‹ ΠΏΠΎ Ρ‚ΠΈΠΏΡƒ Β«ΠΌΠ°Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ стСкла», утолщСнная ΠΏΠ»Π΅Π²Ρ€Π°, консолидация, рСтикулярныС уплотнСния интСрстиция, симптом Β«Π±ΡƒΠ»Ρ‹ΠΆΠ½ΠΎΠΉ мостовой». ΠŸΡ€ΠΈ Π£Π—Π˜ Π»Π΅Π³ΠΊΠΈΡ… ΠΈ ΠΏΠ»Π΅Π²Ρ€Ρ‹ выявляСмыС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ соотвСтствовали ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ КВ. НаиболСС часто ΠΏΡ€ΠΈ Π£Π—Π˜ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»ΠΈΡΡŒ B-Π»ΠΈΠ½ΠΈΠΈ (ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ„ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅, дискрСтныС ΠΈΠ»ΠΈ ΡΠ»ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ) ΠΈ консолидация Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… объСмом Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ консолидации выявляли Ρ€Π΅ΠΆΠ΅, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ (p < 0,001). Π§ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π£Π—Π˜ Π»Π΅Π³ΠΊΠΈΡ… Π² диагностикС пораТСния Π»Π΅Π³ΠΊΠΈΡ… составила 95,3%, Π° ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ – 85,4%, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ΄ ΠΊΡ€ΠΈΠ²ΠΎΠΉ составила 0,976 с Π΄ΠΎΠ²Π΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ 0,961β€’0,991 (p < 0,001).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ИспользованиС Π£Π—Π˜ Π»Π΅Π³ΠΊΠΈΡ… Π²ΠΎ врСмя ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ COVID-19 позволяСт Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ ΠΈ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ объСм ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ поврСТдСния Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π£Π—Π˜ Π»Π΅Π³ΠΊΠΈΡ… продСмонстрировало Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, ΡΡ€Π°Π²Π½ΠΈΠΌΡƒΡŽ с КВ ΠΎΡ€Π³Π°Π½ΠΎΠ² Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΏΡ€ΠΈ выявлСнии ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с COVID-19

    ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π• 3D-ΠœΠžΠ”Π•Π›Π•Π™ БЕРДЦА, Π‘ΠžΠ—Π”ΠΠΠΠ«Π₯ НА ΠžΠ‘ΠΠžΠ’Π• DICOM-Π˜Π—ΠžΠ‘Π ΠΠ–Π•ΠΠ˜Π™, Π’ ΠœΠ•Π”Π˜Π¦Π˜ΠΠ‘ΠšΠžΠ™ ΠŸΠ ΠΠšΠ’Π˜ΠšΠ•

    Get PDF
    Three-dimensional printing (3D printing, additive manufacturing, rapid prototyping) is a technology of a physical object creation fromΒ digital model by layered addition of material. Additive technologies differ from mass production by personalization, customization and relative simplicity of 3D-models creation. 3D models ability toΒ  demonstrate heart anatomy is of use in cardiac surgery, primarily during theΒ educational process and preoperative planning and, less common, for implantable devices testing and hemodynamic modeling. AlthoughΒ the role of 3D models in clinical practice is not currently defined, 3D printing mass application can provide important advantages to solveΒ a number of diagnostic and therapeutic issues. The article presents the revue of scientific publications describing the use of physicalΒ three-dimensional heart models in cardiac surgery.ВрСхмСрная ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ (3D-ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ, Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ΅ производство, быстроС ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅) – это тСхнология создания физичСского ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΠΈΠ· Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ послойного добавлСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ простота создания 3D-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, ΠΈΡ… индивидуализация ΠΈ кастомизация ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΡ‚ сСрийного производства. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΒ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°Π½Π°Ρ‚ΠΎΠΌΠΈΡŽ сСрдца с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ 3D-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»Π° ΠΈΡ…Β  использованиС Π² ΠΊΠ°Ρ€Π΄ΠΈΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ, Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π² Ρ…ΠΎΠ΄Π΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ процСсса ΠΈΒ  ΠΏΡ€Π΅Π΄ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ планирования, Π° Ρ‚Π°ΠΊΠΆΠ΅ для тСстирования имплантируСмых устройств ΠΈ модСлирования Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρ€ΠΎΠ»ΡŒ 3D-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π² клиничСской  ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π² настоящСС врСмя Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π°, Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ 3D-ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ способно Π΄Π°Ρ‚ΡŒ Π²Π°ΠΆΠ½Ρ‹Π΅Β  прСимущСства Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ряда диагностичСских ΠΈ Π»Π΅Ρ‡Π΅Π±Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны  Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… статСй, посвящСнных ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… физичСских модСлСй сСрдца Π² кардиохирургичСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅

    Π£ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ сСрдца с контрастным усилСниСм Π² диагностикС постинфарктного кардиосклСроза папиллярных ΠΌΡ‹ΡˆΡ† Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ°

    Get PDF
    The aim of the study was to assess the opportunities and improve contrast-enhanced cardiac magnetic resonance imaging in the diagnosis of left ventricular papillary muscles scarring. Materials and methods. Contrast-enhanced cardiac magnetic resonance imaging was performed 68 patients after myocardial infarction. The advanced method uses short signal inversion time (150-180 ms) to increase the contrast of myocardial scar in the papillary muscles. Results. The signs of papillary muscles scarring were identified in 16 patients (23,5%) by advanced method and in 12 patient (17.6%) by standard method. The signs of mitral insufficiency was found only in 9 patients (13.2%) by echocardiography. Conlusion. Found that contrast-enhanced cardiac magnetic resonance imaging allows to visualize morphological changes in a papillary muscles before violation of their function and mitral insufficiency development. Using short signal inversion time (150-180ms) allows increase by 3.5 times the contrast of myocardial scar in the papillary muscles.ЦСль: ΠΎΡ†Π΅Π½ΠΊΠ° возмоТностСй ΠΈ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ МРВ с контрастным усилСниСм Π² диагностикС постинфарктного кардиосклСроза папиллярных ΠΌΡ‹ΡˆΡ†. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. На Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π΅ 1,5 Π’Π» МРВ сСрдца с контрастным усилСниСм Π±Ρ‹Π»Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° 68 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ с постинфарктным кардиосклСрозом Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ°. Π£ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° отсрочСнного сканирования ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ использованиС ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ инвСрсии сигнала (150-180 мс) ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ инвСрсия-восстановлСниС для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ контрастности постинфарктного кардиосклСроза Π² папиллярных ΠΌΡ‹ΡˆΡ†Π°Ρ…. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ использовании ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ постинфарктного кардиосклСроза папиллярных ΠΌΡ‹ΡˆΡ† Π±Ρ‹Π»ΠΈ выявлСны Ρƒ 16 (23,5%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², стандартной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ - Ρƒ 12 (17,6%). ΠŸΡ€ΠΈ эхокардиографии ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ нСдостаточности Π±Ρ‹Π»ΠΈ выявлСны Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρƒ 9 (13,2%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². Π’Ρ‹Π²ΠΎΠ΄Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ МРВ сСрдца с контрастным усилСниСм позволяСт Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ морфологичСскиС измСнСния папиллярных ΠΌΡ‹ΡˆΡ† Π΄ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚.Π΅. Π΄ΠΎ развития ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΌΠΈΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ нСдостаточности ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ эхокардиографии. ИспользованиС ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ инвСрсии сигнала ΠΏΡ€ΠΈ отсрочСнном сканировании позволяСт Π² 3,5 Ρ€Π°Π·Π° ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€Π°ΡΡ‚Π½ΠΎΡΡ‚ΡŒ Π·ΠΎΠ½Ρ‹ постинфарктного кардиосклСроза Π² папиллярной ΠΌΡ‹ΡˆΡ†Π΅ Π½Π° Ρ„ΠΎΠ½Π΅ полости Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ со стандартным Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ инвСрсии

    АртСфакты ΠΏΡ€ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ сСрдца: способы устранСния ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ

    Get PDF
    The aim of the study was to describe the cardiac magnetic resonance imaging artifacts and to develop ways to eliminate or interpret them. Materials and methods. 1,5 T contrast-enhanced cardiac magnetic resonance imaging was performed 156 patients with coronary artery disease. Technique of cardiac MRI included an assessment of left ventricular contractility, visualization of edema and acute myocardial damage, assessment of perfusion and myocardial scarring. Results. Various artifacts during cardiac MRI with contrast enhancement were visualized in almost every patient. The quality of cardiac magnetic resonance imaging depended on heart rate and blood flow in the cavities. In addition there were artifacts from the coronary stents, vascular clips, sternum's cerclage, as well as overlaying other organs and structures. During the study, were frequently observed β€œhyperintense endocardium” and β€œdark rim” artifacts which simulated endocardial edema and myocardial perfusion defect. Conclusion. The study found that despite the presence of certain artifacts that can affect the quality of the images and their analysis, there are effective ways to eliminate or reduce them. β€œHyperintense endocardium” and β€œdark rim” artifacts can be distinguished from true pathology.ЦСль исслСдования: описаниС Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚ΠΎΠ² ΠΏΡ€ΠΈ МРВ сСрдца ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° способов ΠΈΡ… устранСния ΠΈΠ»ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. На ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансном Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π΅ 1,5 Π’Π» обслСдовано 156 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° МРВ сСрдца с контрастным усилСниСм Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° ΠΎΡ†Π΅Π½ΠΊΡƒ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ°, Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΎΡ‚Π΅ΠΊΠ° ΠΈ острого поврСТдСния ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°, ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ ΠΈ Ρ€ΡƒΠ±Ρ†ΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚Ρ‹ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ МРВ сСрдца с контрастным усилСниСм Π±Ρ‹Π»ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ практичСски Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ обслСдованного ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²ΠΎ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ сСрдца ΠΏΡ€ΠΈ МРВ Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ зависСло ΠΎΡ‚ частоты сСрдСчных сокращСний ΠΈ рСгулярности Ρ€ΠΈΡ‚ΠΌΠ°. На качСство ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Ρ‚Π°ΠΊΠΆΠ΅ влиял Ρ‚ΠΎΠΊ ΠΊΡ€ΠΎΠ²ΠΈ Π² полостях сСрдца ΠΈ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… сосудах. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»ΠΈ Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚Ρ‹ ΠΎΡ‚ ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½Ρ‹Ρ… стСнтов, сосудистых клипс, сСркляТа Π³Ρ€ΡƒΠ΄ΠΈΠ½Ρ‹, налоТСния Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ². Π’ΠΎ врСмя исслСдования часто наблюдались Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚Ρ‹ β€œΠ³ΠΈΠΏΠ΅Ρ€ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΠ³ΠΎ миокарда” ΠΈ β€œΡ‚Π΅ΠΌΠ½ΠΎΠ³ΠΎ ободка”, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠΌΠΈΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΎΡ‚Π΅ΠΊ эндокарда ΠΈ Π΄Π΅Ρ„Π΅ΠΊΡ‚ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. НСсмотря Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° качСство ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΈΡ… Π°Π½Π°Π»ΠΈΠ·, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ эффСктивныС способы устранСния ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ряда Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚ΠΎΠ². АртСфакты β€œΠ³ΠΈΠΏΠ΅Ρ€ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΠ³ΠΎ эндокарда” ΠΈ β€œΡ‚Π΅ΠΌΠ½ΠΎΠ³ΠΎ ободка” ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ с истинной ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ
    • …
    corecore