4,627 research outputs found

    Demonstrating demand response from water distribution system through pump scheduling

    Get PDF
    Significant changes in the power generation mix are posing new challenges for the balancing systems of the grid. Many of these challenges are in the secondary electricity grid regulation services and could be met through demand response (DR) services. We explore the opportunities for a water distribution system (WDS) to provide balancing services with demand response through pump scheduling and evaluate the associated benefits. Using a benchmark network and demand response mechanisms available in the UK, these benefits are assessed in terms of reduced green house gas (GHG) emissions from the grid due to the displacement of more polluting power sources and additional revenues for water utilities. The optimal pump scheduling problem is formulated as a mixed-integer optimisation problem and solved using a branch and bound algorithm. This new formulation finds the optimal level of power capacity to commit to the provision of demand response for a range of reserve energy provision and frequency response schemes offered in the UK. For the first time we show that DR from WDS can offer financial benefits to WDS operators while providing response energy to the grid with less greenhouse gas emissions than competing reserve energy technologies. Using a Monte Carlo simulation based on data from 2014, we demonstrate that the cost of providing the storage energy is less than the financial compensation available for the equivalent energy supply. The GHG emissions from the demand response provision from a WDS are also shown to be smaller than those of contemporary competing technologies such as open cycle gas turbines. The demand response services considered vary in their response time and duration as well as commitment requirements. The financial viability of a demand response service committed continuously is shown to be strongly dependent on the utilisation of the pumps and the electricity tariffs used by water utilities. Through the analysis of range of water demand scenarios and financial incentives using real market data, we demonstrate how a WDS can participate in a demand response scheme and generate financial gains and environmental benefits

    Approximation of System Components for Pump Scheduling Optimisation

    Get PDF
    © 2015 The Authors. Published by Elsevier Ltd.The operation of pump systems in water distribution systems (WDS) is commonly the most expensive task for utilities with up to 70% of the operating cost of a pump system attributed to electricity consumption. Optimisation of pump scheduling could save 10-20% by improving efficiency or shifting consumption to periods with low tariffs. Due to the complexity of the optimal control problem, heuristic methods which cannot guarantee optimality are often applied. To facilitate the use of mathematical optimisation this paper investigates formulations of WDS components. We show that linear approximations outperform non-linear approximations, while maintaining comparable levels of accuracy

    Breakdown of scale-invariance in the coarsening of phase-separating binary fluids

    Full text link
    We present evidence, based on lattice Boltzmann simulations, to show that the coarsening of the domains in phase separating binary fluids is not a scale-invariant process. Moreover we emphasise that the pathway by which phase separation occurs depends strongly on the relation between diffusive and hydrodynamic time scales.Comment: 4 pages, Latex, 4 eps Figures included. (higher quality Figures can be obtained from [email protected]

    Subduction beneath Laurentia modified the eastern North American cratonic edge : Evidence from P wave and S wave tomography

    Get PDF
    Funding Information: NERC Doctoral Training Partnership: Science and Solutions for a Changing Planet and Leverhulme Trust Acknowledgments A.B. is funded by the NERC Doctoral Training Partnership: Science and Solutions for a Changing Planet. I.B. is funded by the Leverhulme Trust. F.D. acknowledges funding from NSERC through their Discovery grants and Canada Research Chairs program. We thank J. VanDecar for use of his tomographic inversion and MCCC codes. SAC [Helffrich et al., 2013] and GMT [Wessel and Smith, 1995] software were also used to process seismic data obtained from the IRIS DMC and from the Canadian National Data Centre (Natural Resources Canada). A digital supplement is also available to download containing models and the processed relative arrival‐time data set, additional information is available from A.B. (email: [email protected]). Discussing the implications of our tomographic results with S. Goes and A. Hynes provided great motivation for this manuscript. Two anonymous reviewers helped clarify our interpretations.Peer reviewedPublisher PD

    Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions

    Full text link
    The stellar mass-luminosity relation (MLR) is one of the most famous empirical "laws", discovered in the beginning of the 20th century. MLR is still used to estimate stellar masses for nearby stars, particularly for those that are not binary systems, hence the mass cannot be derived directly from the observations. It's well known that the MLR has a statistical dispersion which cannot be explained exclusively due to the observational errors in luminosity (or mass). It is an intrinsic dispersion caused by the differences in age and chemical composition from star to star. In this work we discuss the impact of age and metallicity on the MLR. Using the recent data on mass, luminosity, metallicity, and age for 26 FGK stars (all members of binary systems, with observational mass-errors <= 3%), including the Sun, we derive the MLR taking into account, separately, mass-luminosity, mass-luminosity-metallicity, and mass-luminosity-metallicity-age. Our results show that the inclusion of age and metallicity in the MLR, for FGK stars, improves the individual mass estimation by 5% to 15%.Comment: 7 pages, 4 figures, 1 table, accepted in Astrophysics and Space Scienc

    Shared imaging markers of fatigue across multiple sclerosis, aquaporin-4 antibody neuromyelitis optica spectrum disorder and MOG antibody disease

    Get PDF
    Fatigue is frequently reported by patients with multiple sclerosis, aquaporin-4-antibody neuromyelitis optica spectrum disorder and myelin-oligodendrocyte-glycoprotein antibody disease; thus they could share a similar pathophysiological mechanism. In this cross-sectional cohort study, we assessed the association of fatigue with resting-state functional MRI, diffusion and structural imaging measures across these three disorders. Sixteen patients with multiple sclerosis, 17 with aquaporin-4-antibody neuromyelitis optica spectrum disorder and 17 with myelin-oligodendrocyte-glycoprotein antibody disease assessed, outside of relapses, at the Oxford Neuromyelitis Optica Service underwent Modified Fatigue Impact Scale, Hospital Anxiety and Depression Scale and Expanded Disability Status Scale scoring. A 3T brain and spinal cord MRI was used to derive cortical, deep grey and white matter volumetrics, lesions volume, fractional anisotropy, brain functional connectivity metrics, cervical spinal cord cross-sectional area, spinal cord magnetic transfer ratio and average functional connectivity between the ventral and the dorsal horns of the cervical cord. Linear relationships between MRI measures and total-, cognitive- and physical-fatigue scores were assessed. All analyses were adjusted for correlated clinical regressors. No significant differences in baseline clinical characteristics, fatigue, depression and anxiety questionnaires and disability measures were seen across the three diseases, except for older age in patients with aquaporin-4-antibody neuromyelitis optica spectrum disorder (P = 0.0005). In the total cohort, median total-fatigue score was 35.5 (range 3-72), and 42% of patients were clinically fatigued. A positive correlation existed between the total-fatigue score and functional connectivity of the executive/fronto-temporal network in the in left middle temporal gyrus (P = 0.033) and between the physical-fatigue score and functional connectivity of the sensory-motor network (P = 0.032) in both pre- and post-central gyri. A negative relationship was found between the total-fatigue score and functional connectivity of the salience network (P = 0.023) and of the left fronto-parietal network (P = 0.026) in the right supramarginal gyrus and left superior parietal lobe. No clear relationship between fatigue subscores and the average functional connectivity of the spinal cord was found. Cognitive-fatigue scores were positively associated with white matter lesion volume (P = 0.018) and negatively associated with white matter fractional anisotropy (P = 0.032). Structural, diffusion and functional connectivity alterations were not influenced by the disease group. Functional and structural imaging metrics associated with fatigue relate to brain rather than spinal cord abnormalities. Salience and sensory-motor networks alterations in relation to fatigue might indicate a disconnection between the perception of the interior body state and activity and the actual behavioural responses and performances (reversible or irreversible). Future research should focus on functional rehabilitative strategies

    Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement

    Get PDF
    Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions. © 2022, The Author(s)

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Evaluation of Natural Language Processing for the Identification of Crohn Disease-Related Variables in Spanish Electronic Health Records:A Validation Study for the PREMONITION-CD Project

    Get PDF
    Background: The exploration of clinically relevant information in the free text of electronic health records (EHRs) holds the potential to positively impact clinical practice as well as knowledge regarding Crohn disease (CD), an inflammatory bowel disease that may affect any segment of the gastrointestinal tract. The EHRead technology, a clinical natural language processing (cNLP) system, was designed to detect and extract clinical information from narratives in the clinical notes contained in EHRs. Objective: The aim of this study is to validate the performance of the EHRead technology in identifying information of patients with CD. Methods: We used the EHRead technology to explore and extract CD-related clinical information from EHRs. To validate this tool, we compared the output of the EHRead technology with a manually curated gold standard to assess the quality of our cNLP system in detecting records containing any reference to CD and its related variables. Results: The validation metrics for the main variable (CD) were a precision of 0.88, a recall of 0.98, and an F1 score of 0.93. Regarding the secondary variables, we obtained a precision of 0.91, a recall of 0.71, and an F1 score of 0.80 for CD flare, while for the variable vedolizumab (treatment), a precision, recall, and F1 score of 0.86, 0.94, and 0.90 were obtained, respectively. Conclusions: This evaluation demonstrates the ability of the EHRead technology to identify patients with CD and their related variables from the free text of EHRs. To the best of our knowledge, this study is the first to use a cNLP system for the identification of CD in EHRs written in Spanish. © 2022 JMIR Medical Informatics. All rights reserved

    Design and Process Development for Smart Phone Medication Dosing Support System and Educational Platform in HIV/Aids-TB Programs in Zambia

    Get PDF
    The widespread adoption of cell phones and other mobile platforms represents an opportunity to extend the benefits of personalized, point-of-care, healthcare applications to providers and patients in the developing world. However, the challenges facing the effective deployment of mobile health care applications are complex, and thus require a scalable, flexible, and configurable approach. A service-oriented-architecture-based conceptual framework is proposed to address the challenges of developing and deploying mobile health care applications. A particular emphasis of the framework is a service-agent-modeling-based composite process-personalization support that is needed to support the diverse and adaptable needs of the users
    corecore