4 research outputs found
Sequence Profile of the Parallel β Helix in the Pectate Lyase Superfamily
The parallel β helix structure found in the pectatelyasesuperfamily has been analyzed in detail. A comparative analysis of known structures has revealed a unique sequenceprofile, with a strong positional preference for specific amino acids oriented toward the interior of the parallel β helix. Using the unique sequenceprofile, search patterns have been constructed and applied to the sequence databases to identify a subset of proteins that are likely to fold into the parallel β helix. Of the 19 families identified, 39% are known to be carbohydrate-binding proteins, and 50% belong to a broad category of proteins with sequences containing leucine-rich repeats (LRRs). The most striking result is the sequence match between the search pattern and four contiguous segments of internalin A, a surface protein from the bacterial pathogenListeria monocytogenes.A plausible model of the repetitive LRR sequences of internalin A has been constructed and favorable 3D–1D profile scores have been calculated. Moreover, spectroscopic features characteristic of the parallel β helix topology in the pectate lyases are present in the circular dichroic spectrum of internalin A. Altogether, the data support the hypothesis that sequence search patterns can be used to identify proteins, including a subset of LRR proteins, that are likely to fold into the parallel β helix
Sequence Profile of the Parallel β Helix in the Pectate Lyase Superfamily
The parallel β helix structure found in the pectatelyasesuperfamily has been analyzed in detail. A comparative analysis of known structures has revealed a unique sequenceprofile, with a strong positional preference for specific amino acids oriented toward the interior of the parallel β helix. Using the unique sequenceprofile, search patterns have been constructed and applied to the sequence databases to identify a subset of proteins that are likely to fold into the parallel β helix. Of the 19 families identified, 39% are known to be carbohydrate-binding proteins, and 50% belong to a broad category of proteins with sequences containing leucine-rich repeats (LRRs). The most striking result is the sequence match between the search pattern and four contiguous segments of internalin A, a surface protein from the bacterial pathogenListeria monocytogenes.A plausible model of the repetitive LRR sequences of internalin A has been constructed and favorable 3D–1D profile scores have been calculated. Moreover, spectroscopic features characteristic of the parallel β helix topology in the pectate lyases are present in the circular dichroic spectrum of internalin A. Altogether, the data support the hypothesis that sequence search patterns can be used to identify proteins, including a subset of LRR proteins, that are likely to fold into the parallel β helix