207 research outputs found

    Ionospheric storms at geophysically-equivalent sites – Part 2: Local time storm patterns for sub-auroral ionospheres

    Get PDF
    The response of the mid-latitude ionosphere to geomagnetic storms depends upon several pre-storm conditions, the dominant ones being season and local time of the storm commencement (SC). The difference between a site's geographic and geomagnetic latitudes is also of major importance since it governs the blend of processes linked to solar production and magnetospheric input, respectively. Case studies of specific storms using ionospheric data from both hemispheres are inherently dominated by seasonal effects and the various local times versus longitude of the SCs. To explore inter-hemispheric consistency of ionospheric storms, we identify "geophysically-equivalent-sites" as locations where the geographic and geomagnetic latitudes have the same relationship to each other in both hemispheres. At the longitudes of the dipole tilt, the differences between geographic and geomagnetic latitudes are at their extremes, and thus these are optimal locations to see if pre-conditioning and/or storm-time input are the same or differ between the hemispheres. <br><br> In this study, we use ionosonde values of the F2-layer maximum electron density (<I>Nm</I>F2) to study geophysical equivalency at Wallops Island (VA) and Hobart (Tasmania), using statistical summaries of 206 events during solar cycle #20. We form average patterns of Δ<I>Nm</I>F2 (%) versus local time over 7-day storm periods that are constructed in ways that enhance the portrayal of the average characteristic features of the positive and negative phases of ionospheric storms. The results show a consistency between four local time characteristic patterns of storm-induced perturbations, and thus for the average magnitudes and time scales of the processes that cause them in each hemisphere. Subtle differences linked to small departures from pure geophysical equivalency point to a possible presence of hemispheric asymmetries governed by the non-mirror-image of geomagnetic morphology in each hemisphere

    Periodicities in the occurrence of aurora as indicators of solar variability

    Get PDF
    A compilation of records of the aurora observed in China from the Time of the Legends (2000 - 3000 B.C.) to the mid-18th century has been used to infer the frequencies and strengths of solar activity prior to modern times. A merging of this analysis with auroral and solar activity patterns during the last 200 years provides basically continuous information about solar activity during the last 2000 years. The results show periodicities in solar activity that contain average components with a long period (approx. 412 years), three middle periods (approx. 38 years, approx. 77 years, and approx. 130 years), and the well known short period (approx. 11 years)

    The 1999 Quadrantids and the lunar Na atmosphere

    Get PDF
    Enhancements of the Na emission and temperature from the lunar atmosphere were reported during the Leonid meteor showers of 1995, 1997 and 1998. Here we report a search for similar enhancement during the 1999 Quadrantids, which have the highest mass flux of any of the major streams. No enhancements were detected. We suggest that different chemical-physical properties of the Leonid and Quadrantid streams may be responsible for the differenc

    1999 Quadrantids and the lunar Na atmosphere

    Get PDF
    Enhancements of the Na emission and temperature from the lunar atmosphere were reported during the Leonids meteor showers of 1995, 1997 and 1998. Here we report a search for similar enhancement during the 1999 Quadrantids, which have the highest mass flux of any of the major streams. No enhancements were detected. We suggest that different chemical-physical properties of the Leonid and Quadrantid streams may be responsible for the difference.Comment: 5 pages, 1 figure, accepted for publication in MNRA

    Brightening of 630.0 nm equatorial spread-F airglow depletions

    Get PDF
    [1] Observations from the Boston University all-sky imaging system at Arecibo, Puerto Rico (18.3°N, 66.7°W, 28°N mag), show an unusual behavior of nighttime 630.0-nm airglow depletions. Associated with equatorial spread-F (ESF), these structures move eastward before reversing their motion and become airglow enhancements. Few other cases have been found, all during December solstices. For the case study presented here, data from the Arecibo incoherent scatter radar and the Republic of China Scientific Satellite (ROCSAT-1) provide supporting information. The radar shows that around local midnight the background zonal and meridional plasma motions reverse to westward and southward, respectively. ROCSAT-1 shows enhanced ion density, i.e., a low-latitude plasma blob, above the bright feature recorded by the all-sky imager, indicating a possible connection between both phenomena. Drifts parallel to the magnetic field are observed only in the region where the enhancement occurs. One possible interpretation of this change in the brightness of the depleted structure involves the influence of northward meridional winds and a reversal in the zonal drift motion, most likely caused by a zonal wind reversal

    Imaging science at El Leoncito, Argentina

    Get PDF

    Planetary Imaging Concept Testbed Using a Recoverable Experiment-Coronagraph (PICTURE C)

    Get PDF
    An exoplanet mission based on a high-altitude balloon is a next logical step in humanity's quest to explore Earthlike planets in Earthlike orbits orbiting Sunlike stars. The mission described here is capable of spectrally imaging debris disks and exozodiacal light around a number of stars spanning a range of infrared excesses, stellar types, and ages. The mission is designed to characterize the background near those stars, to study the disks themselves, and to look for planets in those systems. The background light scattered and emitted from the disk is a key uncertainty in the mission design of any exoplanet direct imaging mission, thus, its characterization is critically important for future imaging of exoplanets
    • …
    corecore