2,052 research outputs found

    Innovative approach for decolorizing textile effluents using yeast-alginate capsules

    Get PDF
    Textile industry is an economic activity that produces high volumes of effluents used in fabric processing that are discharged in the environment [1]. These discharged effluents loaded with synthetic dyes and other chemicals, are resistant to biodegradation and persistent in water, and are responsible for toxicity and mutagenic effects on the aquatic life, causing a potential risk to the aquatic ecosystems [2]. Traditionally, industry uses classic chemical methods to treat these effluents that are expensive and potentially harmful, since it could further generate large quantities of toxic by-products that are also difficult to eliminate [3]. In order to aid and complement the traditional wastewater treatment, a yeast-based solution for decolorization of textile industrial wastewater is under evaluation. This research aims to develop a new and innovative biological solution for the effective decolorization of the textile effluents usingalginate-calcium capsules filled with a proven decolorizing yeast.info:eu-repo/semantics/publishedVersio

    Acute Conjunctivitis with Episcleritis and Anterior Uveitis Linked to Adiaspiromycosis and Freshwater Sponges, Amazon Region, Brazil, 2005

    Get PDF
    Medscape, LLC is pleased to provide online continuing medical education (CME) for this journal article, allowing clinicians the opportunity to earn CME credit. This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education through the joint sponsorship of Medscape, LLC and Emerging Infectious Diseases. Medscape, LLC is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide CME for physicians. Medscape, LLC designates this educational activity for a maximum of 0.5 AMA PRA Category 1 Credits™. Physicians should only claim credit commensurate with the extent of their participation in the activity. All other clinicians completing this activity will be issued a certificate of participation. To participate in this journal CME activity: (1) review the learning objectives and author disclosures; (2) study the education content; (3) take the post-test and/or complete the evaluation at http://www.medscape.com/cme/eidExternal Web Site Icon; (4) view/print certificate.\ud Learning Objectives\ud \ud Upon completion of this activity, participants will be able to:\ud \ud Describe the mechanism of infection for adiaspiromycosis.\ud Identify the age group most susceptible to ocular adiaspiromycosis.\ud Describe presenting symptoms associated with ocular adiaspiromycosis.\ud Describe the frequency of ocular lesions associated with adiaspiromycosis.\ud Identify risk factors for ocular adiaspiromycosis

    ICES. 2019. Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA).

    Get PDF
    The Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA1) met by correspondence from 3 to 7 June 2019, and in Madrid from the 25 to the 28 of November 2019, and was chaired by Alexandra Silva (Portugal). There were 13 participants from France, Portugal, Spain and UK. The main task of WGHANSA was to assess the status the stocks of sardine in the Celtic Seas and English Channel (pil.27.7), sardine in the Bay of Biscay (pil.27.8abd), sardine in the Cantabrian Sea and Atlantic Iberian waters (pil.27.8c9a), anchovy in the Bay of Biscay (ane.27.8), anchovy in Atlantic Iberian waters (ane.27.9a; components west and south), horse mackerel in Atlantic Iberian waters (hom.27.9a) and jack mackerel in the Azores (jaa.27.10). Assessments and short-term forecasts were updated according to the stock annexes. There is no assessment method adopted for pil.27.7 due to the lack of data. The stock of pil.27.8abd was assessed as category 1 for the first time, following an interbenchmark. Recruitment has been above the average, the spawning–stock biomass declined and fishing mortality steeply increased in 2010–2012. SSB is fluctuating above MSY Btrigger and F2018 is above FMSY and below Fpa. This year, the DEPM datapoint for 2017 was included in the pil.27.9a assessment for the first time, following a revision of the survey data. The stock has decreased since 2006 and stabilized to a historical low since 2012. The biomass of age 1 and older fish has been decreasing since 2006 and reached the lowest historical value in 2015. It has since increased slightly but is below Blim since 2011. Recruitment has been below the time-series average since 2005. Recruitment in 2018 was around the geometric mean of the last five years. Fishing mortality has been decreasing from a peak in 2011. In 2018, it was the lowest in the time-series and below Fpa and Flim. The stock size indicator for anchovy in 9a.west decreased 90% from 2018 to 2019 (4129 t), after a period of an increasing trend since 2014. The harvest rate decreased 67% from management year 2017 to 2018 being below the median of the historical time-series.The relative spawning–stock biomass of the south component of the anchovy 9.a stock has fluctuated without a trend over the time-series, with most of the values above Bpa. From 2018 to 2019, the relative SSB decreased 5% but is still well above Bpa. Relative Fishing mortality (F) has fluctuated with no clear trend. From management year 2017 to 2018, relative F decreased 93%. The SSB of horse mackerel in Division 9.a fluctuated from 1992, the beginning of the assessment period, to 2012–2013 and afterwards increased continuously to a historical maximum, in 2018. The consistently high recruitment since 2011 has contributed to the SSB increase. Fishing mortality was 0.029 year -1 in 2018, showing a 29% decrease compared to 2017. Fishing mortality has been below FMSY over the whole time-series. The spawning–stock biomass has been above MSY Btrigger over the whole time-series. The exploration of data on anchovy abundance-at-age from juvenile surveys IBERAS-JUVESAR and ECOCADIZ-RECLUTAS indicated the series are still short to conclude about their future incorporation into the assessments. The analyses of internal consistency of the indices and of their consistency with spring acoustic surveys showed promising results for ECOCADIZ-RECLUTAS and pointed out the need to revisit the results of some of the surveys, particularly the IBERAS_JUVESAR series. For sardine, 0-group abundance from IBERAS-JUVESAR (2013–2019) combined with data from an earlier autumn survey, SAR-PT-AUT (discontinued in 2008) covering the northwestern Iberian waters, showed a significant correlation with the abundance of age 1 individuals in surveys carried out in the following spring

    Evolutionary and Experimental Assessment of Novel Markers for Detection of Xanthomonas euvesicatoria in Plant Samples

    Get PDF
    BACKGROUND: Bacterial spot-causing xanthomonads (BSX) are quarantine phytopathogenic bacteria responsible for heavy losses in tomato and pepper production. Despite the research on improved plant spraying methods and resistant cultivars, the use of healthy plant material is still considered as the most effective bacterial spot control measure. Therefore, rapid and efficient detection methods are crucial for an early detection of these phytopathogens. METHODOLOGY: In this work, we selected and validated novel DNA markers for reliable detection of the BSX Xanthomonas euvesicatoria (Xeu). Xeu-specific DNA regions were selected using two online applications, CUPID and Insignia. Furthermore, to facilitate the selection of putative DNA markers, a customized C program was designed to retrieve the regions outputted by both databases. The in silico validation was further extended in order to provide an insight on the origin of these Xeu-specific regions by assessing chromosomal location, GC content, codon usage and synteny analyses. Primer-pairs were designed for amplification of those regions and the PCR validation assays showed that most primers allowed for positive amplification with different Xeu strains. The obtained amplicons were labeled and used as probes in dot blot assays, which allowed testing the probes against a collection of 12 non-BSX Xanthomonas and 23 other phytopathogenic bacteria. These assays confirmed the specificity of the selected DNA markers. Finally, we designed and tested a duplex PCR assay and an inverted dot blot platform for culture-independent detection of Xeu in infected plants. SIGNIFICANCE: This study details a selection strategy able to provide a large number of Xeu-specific DNA markers. As demonstrated, the selected markers can detect Xeu in infected plants both by PCR and by hybridization-based assays coupled with automatic data analysis. Furthermore, this work is a contribution to implement more efficient DNA-based methods of bacterial diagnostics

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    corecore