206 research outputs found
Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition
Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable
Infrared Absorption Investigations Confirm the Extraterrestrial Origin of Carbonado-Diamonds
The first complete infrared FTIR absorption spectra for carbonado-diamond
confirm the interstellar origin for the most enigmatic diamonds known as
carbonado. All previous attempts failed to measure the absorption of
carbonado-diamond in the most important IR-range of 1000-1300 cm-1 (10.00-7.69
micro-m.) because of silica inclusions. In our investigation, KBr pellets were
made from crushed silica-free carbonado-diamond and thin sections were also
prepared. The 100 to 1000 times brighter synchrotron infrared radiation permits
a greater spatial resolution. Inclusions and pore spaces were avoided and/or
sources of chemical contamination were removed. The FTIR spectra of
carbonado-diamond mostly depict the presence of single nitrogen impurities, and
hydrogen. The lack of identifiable nitrogen aggregates in the infrared spectra,
the presence of features related to hydrocarbon stretch bonds, and the
resemblance of the spectra to CVD and presolar diamonds indicate that
carbonado-diamonds formed in a hydrogen-rich interstellar environment. This is
consistent with carbonado-diamond being sintered and porous, with extremely
reduced metals, metal alloys, carbides and nitrides, light carbon isotopes,
surfaces with glassy melt-like patinas, deformation lamellae, and a complete
absence of primary, terrestrial mineral inclusions. The 2.6-3.8 billion year
old fragmented body was of asteroidal proportions
Supporting Spartina: Interdisciplinary Perspective Shows Spartina As A Distinct Solid Genus
In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina
Distribution and Extinction of Ungulates during the Holocene of the Southern Levant
BACKGROUND: The southern Levant (Israel, Palestinian Authority and Jordan) has been continuously and extensively populated by succeeding phases of human cultures for the past 15,000 years. The long human impact on the ancient landscape has had great ecological consequences, and has caused continuous and accelerating damage to the natural environment. The rich zooarchaeological data gathered at the area provide a unique opportunity to reconstruct spatial and temporal changes in wild species distribution, and correlate them with human demographic changes. METHODOLOGY: Zoo-archaeological data (382 animal bone assemblages from 190 archaeological sites) from various time periods, habitats and landscapes were compared. The bone assemblages were sorted into 12 major cultural periods. Distribution maps showing the presence of each ungulate species were established for each period. CONCLUSIONS: The first major ungulate extinction occurred during the local Iron Age (1,200-586 BCE), a period characterized by significant human population growth. During that time the last of the largest wild ungulates, the hartebeest (Alcelaphus buselaphus), aurochs (Bos primigenius) and the hippopotamus (Hippopotamus amphibius) became extinct, followed by a shrinking distribution of forest-dwelling cervids. A second major wave of extinction occurred only in the 19th and 20th centuries CE. Furthermore, a negative relationship was found between the average body mass of ungulate species that became extinct during the Holocene and their extinction date. It is thus very likely that the intensified human activity through habitat destruction and uncontrolled hunting were responsible for the two major waves of ungulate extinction in the southern Levant during the late Holocene
Response and resilience of Spartina alterniflora to sudden dieback
We measured an array of biophysical and spectral variables to evaluate the response and recovery of Spartina alterniflora to a sudden dieback event in spring and summer 2004 within a low marsh in coastal Virginia, USA. S. alterniflora is a foundation species, whose loss decreases ecosystem services and potentiates ecosystem state change. Long-term records of the potential environmental drivers of dieback such as precipitation and tidal inundation did not evidence any particular anomalies, although Hurricane Isabel in fall 2003 may have been related to dieback. Transects were established across the interface between the dieback area and apparently healthy areas of marsh. Plant condition was classified based on ground cover within transects as dieback, intermediate and healthy. Numerous characteristics of S. alterniflora culms within each condition class were assessed including biomass, morphology and spectral attributes associated with photosynthetic pigments. Plants demonstrated evidence of stress in 2004 and 2005 beyond areas of obvious dieback and resilience at a multi-year scale. Resilience of the plants was evident in recovery of ground cover and biomass largely within 3 y, although a small remnant of dieback persisted for 8 y. Culms surviving within the dieback and areas of intermediate impact had modified morphological traits and spectral response that reflected stress. These morphometric and spectral differences among plant cover condition classes serve as guidelines for monitoring of dieback initiation, effects and subsequent recovery. Although a number of environmental and biotic parameters were assessed relative to causation, the reason for this particular dieback remains largely unknown, however
Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus
In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina
Home dialysis: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference
Home dialysis modalities (home hemodialysis [HD] and peritoneal dialysis [PD]) are associated with greater patient autonomy and treatment satisfaction compared with in-center modalities, yet the level of home-dialysis use worldwide is low. Reasons for limited utilization are context-dependent, informed by local resources, dialysis costs, access to healthcare, health system policies, provider bias or preferences, cultural beliefs, individual lifestyle concerns, potential care-partner time, and financial burdens. In May 2021, KDIGO (Kidney Disease: Improving Global Outcomes) convened a controversies conference on home dialysis, focusing on how modality choice and distribution are determined and strategies to expand home-dialysis use. Participants recognized that expanding use of home dialysis within a given health system requires alignment of policy, fiscal resources, organizational structure, provider incentives, and accountability. Clinical outcomes across all dialysis modalities are largely similar, but for specific clinical measures, one modality may have advantages over another. Therefore, choice among available modalities is preference-sensitive, with consideration of quality of life, life goals, clinical characteristics, family or care-partner support, and living environment. Ideally, individuals, their care-partners, and their healthcare teams will employ shared decision-making in assessing initial and subsequent kidney failure treatment options. To meet this goal, iterative, high-quality education and support for healthcare professionals, patients, and care-partners are priorities. Everyone who faces dialysis should have access to home therapy. Facilitating universal access to home dialysis and expanding utilization requires alignment of policy considerations and resources at the dialysis-center level, with clear leadership from informed and motivated clinical teams
Bush Encroachment Control and Risk Management in Semi-Arid Rangelands
We study the role of bush encroachment control for a farmer's income and income risk in a stochastic ecological-economic model of grazing management in semiarid rangelands. In particular, we study debushing as an instrument of risk management that complements the choice of an adaptive grazing management strategy for that sake. We show that debushing, while being a good practice for increasing the mean pasture productivity and thus expected income, also increases the farmer's income risk. The optimal extent of debushing for a risk-averse farmer is thus determined from balancing the positive and negative consequences of debushing on intertemporal and stochastic farm income
- …