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Abstract. In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass
subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, includ-
ing (among others) species previously included in the genera Spartina, Calamovilfa, and
Sporobolus. Spartina species have contributed substantially (and continue contributing) to our
knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology,
biogeography, experimental ecology, biological invasions, environmental management, restora-
tion ecology, history, economics, and sociology. There is no rationale so compelling to subsume
the name Spartina as a subgenus that could rival the striking, global iconic history and use of
the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying
the proposal to change Spartina to Sporobolus. We understand the importance of both the
objective phylogenetic insights and of the subjective formalized nomenclature and hope that
by opening this debate we will encourage positive feedback that will strengthen taxonomic
decisions with an interdisciplinary perspective. We consider that the strongly distinct, mono-
phyletic clade Spartina should simply and efficiently be treated as the genus Spartina.

Key words: botanical nomenclature; coastal ecology; cordgrass; integrative analysis; interdisciplinary
decisions; salt marsh.

In 2014, a DNA-based phylogenetic study confirming
the paraphyly of the grass subtribe Sporobolinae proposed
the creation of a large monophyletic genus Sporobolus,
including (among others) species previously included in
the genera Spartina, Calamovilfa, and Sporobolus (Peter-
son et al. 2014a, b). This comprehensive phylogenetic
research is an important contribution that provides criti-
cal insights into the evolutionary history of the Sporoboli-
nae, encompassing its morphological, physiological and
chromosome number evolution. It also provides a clear
picture of the closest relative (sister) lineages of Spartina,
which is of crucial importance for understanding the
emergence of this polyploid clade that includes only tetra-
ploid to dodecaploid species with a basic chromosome
number of x = 10 (Ainouche et al. 2009).
The rules for naming plant taxa are governed by the

International Association for Plant Taxonomy and
detailed in the International Code of Botanical Nomen-
clature (ICBN; Turland et al. 2018). The guiding princi-
ple in this nomenclature is priority, with a formal base
date of 1753 (first publication of Species Plantarum by
Linnaeus) for historical precedence. The name Spartina
(Spartina Schreb., Gen. Pl. ed. 8[a]. 43. 1789) has histori-
cal priority over Sporobolus (Sporobolus R. Brown,

Prodr. 169. 1810) and Calamovilfa (Calamovilfa, A.
Gray), Hack., True Grasses 113. 1890) under the ICBN
rules. The newly combined monophyletic genus should
retain the priority name Spartina first published in 1789,
that predates recognition and description of Sporobolus
in 1810. While Peterson et al. (2014a) recognized that
the name Spartina had nomenclatural priority, they pro-
posed conserving Sporobolus against Spartina as well as
other genera. Their proposal was accepted by a Perma-
nent Nomenclature Committee of the International
Association for Plant Taxonomy. The authors argued
that conserving the name Sporobolus would avoid taxo-
nomic destabilization, noting that shifting all names to
the senior name Spartina would necessitate many new
binomial combinations and heterotypic synonyms. This
proposal, however, presents major disadvantages includ-
ing not only the creation of an extremely large genus that
encompasses highly divergent clades (e.g., Spartina
diverged from its sister clade sometimes 12–20 million
years ago; Rousseau-Gueutin et al. 2015), but also over-
looking the long and well-rooted history of scientific,
cultural and socioeconomic relevance implicit in
the name Spartina. The important criterion for rejec-
tion or conservation of botanical names is to avoid
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“disadvantageous nomenclatural changes” (McNeill
et al. 2015). We do not agree with the rationale underly-
ing the proposal to change Spartina to Sporobolus. We
argue that this change will serve to undermine the legacy
of significant advances achieved after decades of world-
wide multidisciplinary efforts, often at immense cost.
The genus Spartina Schreb. is a morphologically

well-circumscribed group of grasses (Mobberley 1956),
representing a monophyletic clade (Baumel et al. 2002,
Fortune et al. 2007, Peterson et al. 2014a). Its species are
abundant and widely distributed on every continent
except for Antarctica and are present on some of the most
remote islands of the Atlantic, Pacific and Indian Oceans.
Some Spartina species are among the most studied plant
species (Py�sek et al. 2008) and the genus has contributed
substantially (and it continues contributing) to our
knowledge in multiple disciplines, including evolutionary
biology, molecular biology, biogeography, experimental
ecology, environmental management, restoration ecology,
invasion ecology, history, economics, and sociology.
The smooth cordgrass Spartina alterniflora, for

instance, is a well-known salt marsh plant on temperate
and subtropical coasts. This iconic species has inspired
some of the most insightful concepts and perspectives in
modern ecology, including studies on the causal processes
of plant zonation, debates on the dynamics of soil nutri-
ents in marine and terrestrial ecosystems, the biodegrada-
tion of organic pollutants, the negative vs. positive
interactions in community ecology, the global paradigm
on outwelling-pulsing events in integrative ecology, the
“connectivity” through trophic interactions including the
nursery role hypothesis (Haines 1979, Valiela and Teal
1979, Mendelssohn et al. 1981, Weinstein and Kreeger
2000, Beck et al. 2001, Bruno et al. 2003), the functioning
of environmental eutrophication and the paramount
“top-down vs. bottom-up” processes debate in ecosystem
ecology (Mendelssohn and Morris 2000, Bertness et al.
2001, Silliman and Bertness 2002, Silliman and Bortolus
2003, Valiela 2015). It has further fostered key advances
in our understanding of the role of biotic resistance and
legacy effects in invasion biology (Dethier and Hacker
2005, Hacker and Dethier 2006, 2009, Rilov and Crooks
2009) as well as advances in biogeomorphology (Morris
et al. 2002). Species such as S. alterniflora figured promi-
nently in agriculture and botany in the colonial Americas
(Elliott 1821, Barlett 1908), as well as in pioneer works on
coastal biogeography (Chapman 1960). In modern times,
Spartina species have played a major role in long-term
studies of coastal environmental engineering, inspiring
the “ecological mirages hypothesis” (Bortolus et al.
2015), and in conservation ecology relative to coastal
accretion and marsh creation, as well as of linkages to pri-
mary and secondary production of fauna species world-
wide (Costa and Davy 1992, Adam 1993, Bertness 1999,
Gan et al. 2009, Silliman et al. 2009).
Other species of Spartina have also made critical contri-

butions to scientific knowledge. Spartina anglica, known
as common cordgrass, is a model of recent allopolyploid

speciation (Ainouche et al. 2004). This species derived
from genome doubling of the F1 hybrid S. 9 townsendii
of the native European S. maritima and the introduced
American S. alterniflora (Gray et al. 1991, Ainouche et al.
2009, Strong and Ayres 2013). This recent speciation event
following hybridization and polyploidy makes this lineage
a model system for studying the effects of recurrent gen-
ome merger and duplication in plants (Ainouche et al.
2004, 2012, Kueffer et al. 2013). S. anglica provided the
evidence to reconstruct the long-term epidemic of the
ergot fungus Claviceps purpurea (Raybould et al. 1998). It
is also considered a key model species in the interdisci-
plinary field of “BioGeoMorphology,” demonstrating the
crucial importance of organism traits in landscape forma-
tion (Bouma et al. 2005, 2013, Temmerman et al. 2007,
Schwarz et al. 2018). This species is one of the “100
World’s Worst Invasive Alien Species” and is widely
regarded as an aggressive nonnative species in Europe, the
North American Pacific coast, South American Atlantic
coast, China, New Zealand, Australia and South Africa.
In fact, S. alterniflora and S. anglica are responsible for
some of the largest continental-scale bioinvasion events
ever recorded in Asia (Qiu 2013) and the Americas
(Bortolus et al. 2015) having reshaped vast coastal-marine
ecosystems and altered coastal geomorphology, biodiver-
sity, and primary and secondary productivity. These inva-
sions resulted in striking, cascading socioeconomic
impacts (Li et al. 2009, Strong and Ayres 2009, Wan et al.
2009, Saarela 2012, Luque et al. 2014, Yin et al. 2015).
The saltmeadow cordgrass S. patens has long been

central to a number of important experiments in marine
ecology, including foundational work designed to under-
stand coastal plant zonation (Bertness 1991), microevo-
lution of clonal plants (Silander 1979), and the
physiological mechanisms for the intra- and extra-
cellular regulation in habitats where hypersaline condi-
tions and the lack of oxygen can reach toxic levels for
most species (Morris 1984, Burdick and Mendelssohn
1987, Pennings and Bertness 2001). The prairie cord-
grass S. pectinata is currently used in predictive models
focusing on different genotypes for woody biomass pro-
duction in bioenergy research, and in studies directed to
identify stress tolerance genes, as well as in pollutant
remediation projects (Carpita and Sage 2015, Friesen
et al. 2015). Manipulative experiments with S. foliosa
and S. densiflora illustrate the major control that these
species can exert on physical conditions and the conse-
quences for native and introduced invertebrates along
the North Pacific and the Southwestern Atlantic, respec-
tively (Levin et al. 2006, Whitcraft and Levin 2007,
Sueiro et al. 2012, 2013). The austral cordgrass S. densi-
flora is described as a key dominant in a new type of
coastal environment named “rocky marshes” (Bortolus
et al. 2009). This species and its hybrids also permitted
elucidation of the complex routes nonnative species fol-
low across oceans, with works in the United States and
Spain showing that introduced species may lay
fallow for decades before aggressively spreading at
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unprecedented rates (Bortolus 2006, Ayres et al. 2008,
Fortune et al. 2008, Castillo et al. 2010, 2018). Substan-
tial advances in understanding adaptations to soil anox-
ia, soil drainage, and soil chemistry, and how these
processes influence plant growth, were achieved by
studying Spartina species (Weinstein and Kreeger 2000).
Importantly, Spartina is one of a small handful of spe-

cies that is known by its scientific name to the general
public who live along coastlines around the world. In its
native range, it is beloved by environmentalists. In its
introduced range, it is the focus of environmental action
by citizen scientists. The U.S. Pacific coast, for instance,
is commonly patrolled by volunteers called “Spartina
Watchers” participating in early-detection activities to
discover new nonnative Spartina populations. This has
been repeatedly acknowledged at the International Spar-
tina Conference, attended by professional scientists and
environmental managers, and held regularly since 1990
in different countries to discuss the problems associated
with this plant group, its increasing global distribution,
the impacts on human society, and possible solutions.
While databases such as GenBank and Tropicos have

unilaterally adopted Sporobolus, giving an illusory impres-
sion of broad consensus, changing Spartina to Sporobolus
has not found support for nearly half a decade in the pri-
mary peer-reviewed scientific literature. On the contrary,
Google Scholar records 7,290 uses of “Spartina alterni-
flora” vs. 11 uses of “Sporobolus alterniflorus” since 2015.
Web of Science shows no (zero) listings using Sporobolus
alterniflorus in the title between 2015 and 2019, while
Spartina alterniflora has 189 listings. Moreover, a search
in Web of Science showed 4,626 papers under the topic
“Spartina,” while 690 papers were found using “Sporobo-
lus” as a Topic. Given the number of species in each genus,
17 in Spartina and about 200 in Sporobolus (Peterson
et al. 2014a) this works out to eight times more papers per
species on Spartina than Sporobolus. The discrepancy
becomes more pronounced when the search term is used
under the title category: 1,507 for Spartina vs. 184 for
Sporobolus, almost 1009 more papers per species have
been written on Spartina than Sporobolus. While only a
few examples are cited in this report, if this was a review
article, the pages of an entire journal issue would be
required to cite all the literature produced on Spartina
since the genus was first described in 1789. The ultimate
test of the value of a taxonomic revision is its acceptance
and application by the international scientific community.
Clearly, this is not the case with the change of Spartina for
Sporobolus. As one final example, while this work was
under review, two papers (Gallego-T�evar et al. 2019,
Infante-Izquierdo et al. 2019) that include taxonomic
updates on Spartina species were peer reviewed and pub-
lished by respected journals focused on plant systematics.
Similarly, the New Flora of the British Isles published in
2019 retains the name Spartina after considering the case
(Stace 2019). It is of no small concern that globally popu-
lar (digital open-access websites) databases are likely to
induce the acceptance of replacing Spartina for

Sporobolus, while potentially restraining any further
nomenclatural discussions and sound open debate.
Spartina is a deeply nested, strongly supported clade

(Peterson et al. 2014a, b). Peterson et al. (2014b) pro-
posed retaining Spartina as a subgenus of Sporobolus (“A
molecular phylogeny and new subgeneric classifica-
tion. . .” [title of paper] and “A proposed classification of
the Sporobolinae and subgeneric classification of Sporobo-
lus” [Table 2 legend]). Whether a name is employed as a
genus or subgenus does not change any conclusions about
evolutionary relationships derived from molecular-based
(or morphological-based) phylogenies. Decisions as to
whether a name is used as a genus or subgenus are subjec-
tive; no commission, congress, or committee rules on this
question. There is clearly no rationale so compelling to
subsume the name Spartina as a subgenus that could rival
the striking, global, iconic history and use of the name
Spartina for over 200 years. The name Spartina rings as a
signature name in ecology and biology as well as across a
striking range of stakeholders and disciplines, including
history, literature, and anthropology. Within this context,
the phylogenetic relationships provided by Peterson et al.
(2014b) supply good basis for (re)naming other Sporoboli-
nae clades in agreement with other experts.
We unequivocally recognize the value of molecular

work that may provide the basis for objective phylogenetic
insights. This said, on this report we have focused on a
subjective nomenclatural question, which we feel deserves
critical attention. ln this sense, we do not seek to stifle dif-
fering nomenclatural viewpoints but, rather, the contrary
(see Bortolus 2008, 2012). Thus, our work should not be
interpreted as a general argument for the systematic rejec-
tion of name changes; indeed, we fully understand the
importance of both phylogenetic resolutions and of the
resulting formalized nomenclature that may accompany
such advances (Thomson et al. 2018). Given that scientific
names are hypotheses, our hope is that by opening this
debate we will encourage positive feedback that will
strengthen taxonomic decisions. Few taxa, in botany or
zoology, have ever provided such an immense impact in so
many scientific and non-scientific fields as has Spartina,
intimately linked to the initial recognition of the ecological
importance of coastal salt marshes globally as well as con-
tributing to our understanding of the top five direct dri-
vers of change in nature (IPBES 2019) with profound
global impacts. The name Spartina has linked and should
continue to link scientists, citizens, and environmental
managers across the globe. We, therefore, consider that
the distinct well-knit clade designated as subgenus Spar-
tina by Peterson et al. 2014a, should simply and efficiently
be treated as the genus Spartina.
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