51 research outputs found

    Persistent microglial activation and synaptic loss with behavioral abnormalities in mouse offspring exposed to CASPR2-antibodies in utero

    Get PDF
    Gestational transfer of maternal antibodies against fetal neuronal proteins may be relevant to some neurodevelopmental disorders, but until recently there were no proteins identified. We recently reported a fivefold increase in CASPR2-antibodies in mid-gestation sera from mothers of children with intellectual and motor disabilities. Here, we exposed mice in utero to purified IgG from patients with CASPR2-antibodies (CASPR2-IgGs) or from healthy controls (HC-IgGs). CASPR2-IgG but not HC-IgG bound to fetal brain parenchyma, from which CASPR2-antibodies could be eluted. CASPR2-IgG exposed neonates achieved milestones similarly to HC-IgG exposed controls but, when adult, the CASPR2-IgG exposed progeny showed marked social interaction deficits, abnormally located glutamatergic neurons in layers V-VI of the somatosensory cortex, a 16% increase in activated microglia, and a 15-52% decrease in glutamatergic synapses in layers of the prefrontal and somatosensory cortices. Thus, in utero exposure to CASPR2-antibodies led to permanent behavioral, cellular, and synaptic abnormalities. These findings support a pathogenic role for maternal antibodies in human neurodevelopmental conditions, and CASPR2 as a potential target

    Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/-mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Structure-Based Analysis of Five Novel Disease-Causing Mutations in 21-Hydroxylase-Deficient Patients

    Get PDF
    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism, and accounts for 90–95% of CAH cases. The affected enzyme, P450C21, is encoded by the CYP21A2 gene, located together with a 98% nucleotide sequence identity CYP21A1P pseudogene, on chromosome 6p21.3. Even though most patients carry CYP21A1P-derived mutations, an increasing number of novel and rare mutations in disease causing alleles were found in the last years. In the present work, we describe five CYP21A2 novel mutations, p.R132C, p.149C, p.M283V, p.E431K and a frameshift g.2511_2512delGG, in four non-classical and one salt wasting patients from Argentina. All novel point mutations are located in CYP21 protein residues that are conserved throughout mammalian species, and none of them were found in control individuals. The putative pathogenic mechanisms of the novel variants were analyzed in silico. A three-dimensional CYP21 structure was generated by homology modeling and the protein design algorithm FoldX was used to calculate changes in stability of CYP21A2 protein. Our analysis revealed changes in protein stability or in the surface charge of the mutant enzymes, which could be related to the clinical manifestation found in patients

    Rheumatology training experience across Europe : Analysis of core competences

    Get PDF
    Publisher Copyright: © 2016 The Author(s). Copyright: Copyright 2019 Elsevier B.V., All rights reserved.Background: The aim of this project was to analyze and compare the educational experience in rheumatology specialty training programs across European countries, with a focus on self-reported ability. Method: An electronic survey was designed to assess the training experience in terms of self-reported ability, existence of formal education, number of patients managed and assessments performed during rheumatology training in 21 core competences including managing specific diseases, generic competences and procedures. The target population consisted of rheumatology trainees and recently certified rheumatologists across Europe. The relationship between the country of training and the self-reported ability or training methods for each competence was analyzed through linear or logistic regression, as appropriate. Results: In total 1079 questionnaires from 41 countries were gathered. Self-reported ability was high for most competences, range 7.5-9.4 (0-10 scale) for clinical competences, 5.8-9.0 for technical procedures and 7.8-8.9 for generic competences. Competences with lower self-reported ability included managing patients with vasculitis, identifying crystals and performing an ultrasound. Between 53 and 91 % of the trainees received formal education and between 7 and 61 % of the trainees reported limited practical experience (managing ≤10 patients) in each competence. Evaluation of each competence was reported by 29-60 % of the respondents. In adjusted multivariable analysis, the country of training was associated with significant differences in self-reported ability for all individual competences. Conclusion: Even though self-reported ability is generally high, there are significant differences amongst European countries, including differences in the learning structure and assessment of competences. This suggests that educational outcomes may also differ. Efforts to promote European harmonization in rheumatology training should be encouraged and supported.publishersversionPeer reviewe

    Frontal evoked γ activity modulates behavioural performance in Autism Spectrum Disorders in a perceptual simultaneity task

    No full text
    Autism spectrum disorders (ASDs) are associated with anomalies in time perception. In a perceptual simultaneity task, individuals with ASD demonstrate superior performance compared to typically developing (TD) controls. γ-activity, a robust marker of visual processing, is reportedly altered in ASD in response to a wide variety of tasks and these differences may be related to superior performance in perceptual simultaneity. Using time-frequency analysis, we assessed evoked γ-band phase-locking in magnetoencephalographic recordings of 16 ASD individuals and 17 age-matched TD controls. Individuals judged whether presented visual stimuli were simultaneous or asynchronous. We identified left frontal γ-activity in ASD, which was associated with a reduced perception of simultaneity. Where feature binding was observed at a neurophysiological level in parieto-occipital cortices in ASD in apparent simultaneity (asynchronous stimuli with short delay between them), this did not predict the correct behavioural outcome. These findings suggest distinct γ profiles in ASD associated with the perception of simultaneity

    Frontal evoked γ activity modulates behavioural performance in Autism Spectrum Disorders in a perceptual simultaneity task

    No full text
    Autism spectrum disorders (ASDs) are associated with anomalies in time perception. In a perceptual simultaneity task, individuals with ASD demonstrate superior performance compared to typically developing (TD) controls. γ-activity, a robust marker of visual processing, is reportedly altered in ASD in response to a wide variety of tasks and these differences may be related to superior performance in perceptual simultaneity. Using time-frequency analysis, we assessed evoked γ-band phase-locking in magnetoencephalographic recordings of 16 ASD individuals and 17 age-matched TD controls. Individuals judged whether presented visual stimuli were simultaneous or asynchronous. We identified left frontal γ-activity in ASD, which was associated with a reduced perception of simultaneity. Where feature binding was observed at a neurophysiological level in parieto-occipital cortices in ASD in apparent simultaneity (asynchronous stimuli with short delay between them), this did not predict the correct behavioural outcome. These findings suggest distinct γ profiles in ASD associated with the perception of simultaneity

    Head injury patterns in helmeted and non-helmeted cyclists admitted to a London Major Trauma Centre with serious head injury

    No full text
    Background: Cycle use across London and the UK has increased considerably over the last 10 years. With this there has been an increased interest in cycle safety and injury prevention. Head injuries are an important cause of mortality and morbidity in cyclists. This study aimed to ascertain the frequency of different head injury types in cyclists and whether wearing a bicycle helmet affords protection against specific types of head injury. Methods A retrospective observational study of all cyclists older than 16 years admitted to a London Major Trauma Centre between 1st January 2011 and 31st December 2015 was completed. A cohort of patients who had serious head injury was identified (n = 129). Of these, data on helmet use was available for 97. Comparison was made between type of injury frequency in helmeted and non-helmeted cyclists within this group of patients who suffered serious head injury. Results: Helmet use was shown to be protective against intracranial injury in general (OR 0.2, CI 0.07–0.55, p = 0.002). A protective effect against subdural haematoma was demonstrated (OR 0.14, CI 0.03–0.72, p = 0.02). Wearing a helmet was also protective against skull fractures (OR 0.12, CI 0.04–0.39, p&lt;0.0001) but not any other specific extracranial injuries. This suggests that bicycle helmets are protective against those injuries caused by direct impact to the head. Further research is required to clarify their role against injuries caused by shearing forces. Conclusions: In a largely urban environment, the use of cycle helmets appears to be protective for certain types of serious intra and extracranial head injuries. This may help to inform future helmet design.</p

    The effects of Xenon gas inhalation on neuropathology in a placental‐induced brain injury model in neonates: A pilot study

    No full text
    Improved obstetric and neonatal care have reduced the prevalence of severe hypoxic-ischemic-encephalopathy (HIE), however 1-3/1000 newborns in the developed world(1) suffer death or neurodevelopmental disability from HIE. The normal development of the brain during gestation can also be altered by placental reprogramming under oxidative stress. Under these conditions, the placenta releases DNA damaging molecules, bone morphogenic proteins, microRNAs, and glutamate(2). At present, one is unable to diagnose or treat these factors
    corecore