23 research outputs found

    Toxicity and Preventive Activity of Chitosan, Equisetum arvense, Lecithin and Salix Cortex against Plasmopara viticola, the Causal Agent of Downy Mildew in Grapevine

    Get PDF
    Grapevine, a crop of global economic importance, is annually affected by diseases that can compromise the quality and quantity of the harvest, producing large economic losses. Downy mildew caused by Plasmopara viticola (Berk. & M.A. Curtis) Berl. & de Toni is one of the most important diseases in the vineyard. To fight this pathogen, winegrowers often rely on conventional chemical fungicides or copper-based formulations, whose use is determined to be reduced by the European Commission due to their environmental consequences. Hence, alternative plant protection products (PPP) in grapevine must be considered and studied. In this context, we selected several alternative commercial products, based on basic substances (BS) or low-risk active substances (LRAS), to evaluate their suitability to deal with P. viticola. We measured the preventive activity of the products, both in vitro and in planta, as well as their toxicity against the sporangia and zoospores of the pathogen. Results showed that four commercial products were effective against the pathogen directly and preventively, being composed of approved basic substances, more concretely, chitosan, Equisetum arvense, lecithins, and Salix cortex. Among those, the products composed of lecithins and Salix cortex were the most toxic and active preventively. Therefore, these basic substances should be promoted in the vineyard as an alternative to conventional treatments in order to transition to a more sustainable viticulture.This research was funded by the Department of Economic Development, Sustainability and Environment of the Basque Government aid program for the training of young researchers and technologists in the scientific-technological and business environment of the Basque agricultural, fisheries and food sector, regulated by Decree 185 /2007, of October 23 (replaced by Decree 115/2021, of March 23) with funding number 00012-PIT2019-22. A.M.P. is part of the consolidated research group IT1682-22 of the University of the Basque Country (UPV/EHU)

    A physiological approach to study the competition ability of the grassland species Trifolium pratense and Agrostis capillaris

    Get PDF
    (EN) The response of plant species to external factors depends partly on the interaction with the environment and with the other species that coexist in the same ecosystem. Several studies have investigated the main traits that determine the competitive capacity of plant species, and although the relevance of the traits is not clear, traits both from belowground and aboveground have been observed. In this paper, we grew Trifolium pratense and Agrostis capillaris in intra- and interspecific competition, analyzing the photosynthetic metabolism and nitrogen uptake, among other variables. The results indicated that T. pratense possesses better competition ability due to the higher competitive performance for soil resources compared to A. capillaris, explained by a higher root biomass and a higher nitrogen uptake rate in the former than in the latter. These traits permitted T. pratense to show higher photosynthetic rate than A. capillaris when both species were grown in mixture. Furthermore, the interspecific competition provoked A. capillaris to activate its antioxidant metabolism, through SOD activity, to detoxify the reactive oxygen species generated due to its lower capacity for using the photochemical energy absorbed. In this experiment, we conclude that the competitiveness seems to be more related with soil resources competition than with light competition, and that the photosynthetic rate decline in A. capillaris is more a secondary effect as a consequence of nitrogen limitation.Research was financially supported by: MICINN-BFU2010-16349/BFI cofounded by ERDF, UFI11/24 and GRUPO Gobierno Vasco-IT1022-16. J. Miranda-Apodaca is the recipient of a postdoctoral fellow from the University of the Basque Country (UPV/EHU

    Sorghum bicolor prioritizes the recovery of its photosynthetic activity when re-watered after severe drought stress, while manages to preserve it under elevated CO2 and drought

    Get PDF
    Understanding plant response and resilience to drought under a high CO2 environment will be crucial to ensure crop production in the future. Sorghum bicolor is a C4 plant that resists drought better than other crops, which could make it a good alternative to be grown under future climatic conditions. Here, we analyse the physiological response of sorghum under 350 ppm CO2 (aCO2) or 700 ppm CO2 (eCO2) with drought (D) or without drought (WW) for 9, 13 and 16 days; as well as its resilience under long (R1: 9D + 7R) or short (R2: 13D + 3R) recovery treatments. Sorghum showed elevated rates of gs under aCO2 and WW, which resulted in a significant decrease in Ψw, gs, E, ΦPSII, Fv’/Fm′ when exposed to drought. Consequently, A was greatly decreased. When re-watered, both re-watering treatments prioritized A recovery by restoring photosynthetic machinery under aCO2, whereas under eCO2 plants required little recovery since plant were hardly affected by drought. However, sorghum growth rate for aboveground organs did not reach control values, indicating a slower long-term recovery. Overall, these results provide information about the resilience of sorghum and its utility as a suitable candidate for the drought episodes of the future.This research was financially supported by grant GRUPO Gobierno Vasco-IT022-16. X. S. Martínez-Goñi is the recipient of a grant from Departamento de Universidades e Investigación del Gobierno Vasco (Spain). A. Robredo was the recipient of a grant from Departamento de Educación, Universidades e Investigación del Gobierno Vasco (Spain)

    Changes in environmental CO2 concentration can modify Rhizobium-soybean specificity and condition plant fitness and productivity

    Get PDF
    (EN) Over the past 10 years, it has been demonstrated in the literature that legume responses to elevated [CO2], whether positive, negative, or null, are in part dependent on the Rhizobium species and genotypes that establish symbiosis with the plant. However, all the strains used in these past experiments were isolated in field conditions at ambient [CO2]. We studied for first time the fitness response of soybean inoculated with a Rhizobium strain that has been previously isolated from nodules of plants grown at elevated [CO2] in field conditions at a FACE site. In experiments developed in controlled growth chambers, and in the field under ambient [CO2], the plants inoculated with the strain isolated at elevated [CO2] showed similar response as plants without inoculation. We hypothesize that deficient nodulation may be associated with a change in root exudates caused by the change in [CO2]. This study showed that the strains isolated in nodules at elevated [CO2] are not capable of properly nodulating soybean plants grown at ambient [CO2] and that the origin of strains do not ensure the performance of plants under the same conditions. However, more research is needed in order to understand how changes in environmental conditions can affect the symbiotic relationship and ultimately how we can improve plant fitness in a changeable world.This research was financially supported by the following grant: GRUPO GobiernoVasco-IT1022-16

    Soybean Inoculated with One Bradyrhizobium Strain Isolated at Elevated [CO2] Show an Impaired C and N Metabolism When Grown at Ambient [CO2]

    Get PDF
    Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through N-15(2)-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by N-15(2)-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N-2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.This work was financially supported by the following grants: GRUPO Gobierno Vasco IT1022-16 and projects 32-2016-00043, 37-2017-00047, and 000049-IDA2019-38 from the Economic Development and Infrastructures Department of the Basque Country, Spai

    Explorando el potencial bioestimulante del alga invasora Rugulopterix okamurae en vid

    Get PDF
    Trabajo presentado en las IV Jornadas del Grupo de Viticultura de la Sociedad Española de Ciencias Hortícolas, celebradas en Pamplona (España), del 26 al 28 de octubre de 202

    Holistic understanding of the response of grapevines to foliar application of seaweed extracts

    Get PDF
    Viticulture is highly dependent on phytochemicals to maintain good vineyard health. However, to reduce their accumulation in the environment, green regulations are driving the development of eco-friendly strategies. In this respect, seaweeds have proven to be one of the marine resources with the highest potential as plant protective agents, representing an environmentally-friendly alternative approach for sustainable wine production. The current work follows an interdisciplinary framework to evaluate the capacity of Ulva ohnoi and Rugulopteryx okamurae seaweeds to induce defense mechanisms in grapevine plants. To our knowledge, this is the first study to evaluate Rugulopteryx okamurae as a biostimulator . This macroalgae is relevant since it is an invasive species on the Atlantic and Mediterranean coast causing incalculable economic and environmental burdens. Four extracts (UL1, UL2, RU1 and RU2 developed from Ulva and Rugulopteryx, respectively) were foliar applied to Tempranillo plants cultivated under greenhouse conditions. UL1 and RU2 stood out for their capacity to induce defense genes, such as a PR10, PAL, STS48 and GST1, mainly 24 hours after the first application. The increased expression level of these genes agreed with i) an increase in trans-piceid and trans-resveratrol content, mainly in the RU2 treated leaves, and, ii) an increase in jasmonic acid and decrease in salicylic acid. Moreover, an induction of the activity of the antioxidant enzymes was observed at the end of the experiment, with an increase in superoxide dismutase and catalase in the RU2-treated leaves in particular. Interestingly, while foliar fungal diversity was not influenced by the treatments, alga extract amendment modified fungal composition, RU2 application enriching the content of various groups known for their biocontrol activity. Overall, the results evidenced the capacity of Rugulopteryx okamurae for grapevine biostimulation, inducing the activation of several secondary metabolite pathways and promoting the abundance of beneficial microbiota involved in grapevine protection. While further studies are needed to unravel the bioactive compound(s) involved, including conducting field experiments etc., the current findings are the first steps towards the inclusion of Rugulopteryx okamurae in a circular scheme that would reduce its accumulation on the coast and benefit the viticulture sector at the same time

    SEAWINES: Use of macroalgae as biostimulants against fungal diseases in grapevines

    Get PDF
    The outlook for climate change foresees major impacts on vineyards worldwide, shifting pathogens distribution and dynamics demanding more intense plant protection measures in certain regions, increasing viticulture's dependence on phytochemicals and pesticides. However, the European Commission is applying restrictions on their use, encouraging the development of more sustainable strategies efficient for disease control. Seaweeds represent an ecological alternative for a more sustainable production. Previous studies have shown that algae extracts contain compounds capable of reducing the abundance of plant fungal pathogens. Despite it, little is known about the molecular mechanism underlying this response. SEAWINES project is evaluating the efficacy of the foliar application of Ulva ohnoi and Rugulopteryx okamurae extracts to control powdery and downy mildew, in addition to testing their effect on grape and wine quality. To our knowledge, this is the first study evaluating R. okamurae biostimulant capacity and fungicidal effect in viticulture. This macroalgae is relevant since it is an invasive species in our coasts, causing incalculable economic and environmental burdens. We aim to 1- Reduce the usage of chemicals in grapevines; 2- Reduce fungal diseases in viticulture; 3- Valorize polysaccharides from seaweeds; 4- Increase the added-value to wines (ecological and quality); and 5- Provide an alternative use to seaweed biomass, contributing to bio-circular economy and reducing its accumulation in our coasts
    corecore