104 research outputs found

    Quenching Star Formation at Intermediate Redshifts: Downsizing of the Mass Flux Density in the Green Valley

    Get PDF
    The bimodality in galaxy properties has been observed at low and high redshifts, with a clear distinction between star-forming galaxies in the blue cloud and passively evolving objects in the red sequence; the absence of galaxies with intermediate properties indicates that the quenching of star formation and subsequent transition between populations must happen rapidly. In this paper, we present a study of over 100 transiting galaxies in the so-called green valley at intermediate redshifts (z ~ 0.8). By using very deep spectroscopy with the DEIMOS instrument at the Keck telescope we are able to infer the star formation histories of these objects and measure the stellar mass flux density transiting from the blue cloud to the red sequence when the universe was half its current age. Our results indicate that the process happened more rapidly and for more massive galaxies in the past, suggesting a top-down scenario in which the massive end of the red sequence is forming first. This represents another aspect of downsizing, with the mass flux density moving toward smaller galaxies in recent times

    Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

    Get PDF
    We present 12^{12}CO(1-0) and 12^{12}CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 μ\mum emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 109^9 M⊙_{\odot}, contrary to the atomic hydrogen fraction, MHI_{HI}/M∗_*, which increases inversely with M∗_*. The flattening of the MH2_{H_2}/M∗_* ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, τdep\tau_{dep}, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between HI deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity.Comment: 19 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Detections of CO Molecular Gas in 24um-Bright ULIRGs at z~2 in the Spitzer First Look Survey

    Get PDF
    We present CO observations of 9 ULIRGs at z~2 with S(24\mu m)>1mJy, previously confirmed with the mid-IR spectra in the Spitzer First Look Survey. All targets are required to have accurate redshifts from Keck/GEMINI near-IR spectra. Using the Plateau de Bure millimeter-wave Interferometer (PdBI) at IRAM, we detect CO J(3-2) [7 objects] or J(2-1) [1 object] line emission from 8 sources with integrated intensities Ic ~(5-9)sigma. The CO detected sources have a variety of mid-IR spectra, including strong PAH, deep silicate absorption and power-law continuum, implying that these molecular gas rich objects at z~2 could be either starbursts or dust obscured AGNs. The measured line luminosity L'[CO] is (1.28-3.77)e+10[K km/s pc^2]. The averaged molecular gas mass M(H2) is 1.7e+10Msun, assuming CO-to-H2 conversion factor of 0.8Msun/[K km/s pc^2]. Three sources (33%) -- MIPS506, MIPS16144 & MIPS8342 -- have double peak velocity profiles. The CO double peaks in MIPS506 and MIPS16144 show spatial separations of 45kpc and 10.9kpc, allowing the estimates of the dynamical masses of 3.2e+11*sin^(-2)(i)Msun and 5.4e+11*sin^{-2}(i)Msun respectively. The implied gas fraction, M(gas)/M(dyn), is 3% and 4%, assuming an average inclination angle. Finally, the analysis of the HST/NIC2 images, mid-IR spectra and IR SED revealed that most of our sources are mergers, containing dust obscured AGNs dominating the luminosities at (3-6)um. Together, these results provide some evidence suggesting SMGs, bright 24um z~2 ULIRGs and QSOs could represent three different stages of a single evolutionary sequence, however, a complete physical model would require much more data, especially high spatial resolution spectroscopy.Comment: 15 pages, 8 figures, accepted for publication in ApJ

    Inverted metallicity gradients in two Virgo cluster star-forming dwarf galaxies: evidence of recent merging?

    Full text link
    We present integral field spectroscopy observations of two star-forming dwarf galaxies in the Virgo cluster (VCC135 and VCC324) obtained with PMAS/PPak at the Calar Alto 3.5 meter telescope. We derive metallicity maps using the N2 empirical calibrator. The galaxies show positive gas metallicity gradients, contrarily to what is usually found in other dwarfs or in spiral galaxies. We measure gradient slopes of 0.20 ±\pm 0.06 and 0.15 ±\pm 0.03 dex/ReR_e for VCC135 and VCC324, respectively. Such a trend has been only observed in few, very isolated galaxies, or at higher redshifts (z>z > 1). It is thought to be associated with accretion of metal-poor gas from the intergalactic medium, a mechanism that would be less likely to occur in a high-density environment like Virgo. We combine emission line observations with deep optical images to investigate the origin of the peculiar metallicity gradient. The presence of weak underlying substructures in both galaxies and the analysis of morphological diagnostics and of ionised gas kinematics suggest that the inflow of metal-poor gas to the central regions of the dwarfs may be related to a recent merging event with a gas-rich companion.Comment: 13 pages, 9 figures, MNRAS in press. V2: minor figure revisions and minor title change

    Dark matter distribution in Milky Way-analog galaxies

    Full text link
    Our current understanding of how dark matter (DM) is distributed within the Milky Way (MW) halo, particularly in the solar neighborhood, is based on either careful studies of the local stellar orbits or model assumptions on the global shape of the MW halo. In this work, we undertake a study of external galaxies, with the intent of providing insight to the DM distribution in MW-analog galaxies. For this, we carefully select a sample of galaxies similar to the MW, based on maximum atomic hydrogen (HI) rotational velocity (v=200-280 km s^{-1}) and morphological type (Sab-Sbc) criteria. With a need for deep, highly-resolved HI, our resulting sample is composed of 5 galaxies from the VIVA and THINGS surveys. To perform our baryonic analysis, we use deep Spitzer mid-IR images at 3.6 and 4.5 {\mu}m from the S4G survey. Based on the dynamical three-dimensional modeling software 3D-Barolo, we construct RCs and derive the gas and stellar contributions from the galaxy\'s gaseous- and stellar-disks mass surface density profiles. Through a careful decomposition of their rotation curves into their baryonic (stars, gas) and DM components, we isolate the DM contribution by using an MCMC-based approach. Based on the Sun\'s location and the MW\'s R_{25}, we define the corresponding location of the solar neighborhood in these systems. We put forward a window for the DM density (\rho=0.21-0.46 GeV cm^{-3}) at these galactocentric distances in our MW analog sample, consistent with the values found for the MW\'s local DM density, based on more traditional approaches found in the literature.Comment: 16 pages, 6 figures, 3 tables, submitted to Ap

    A Magellan-IMACS-IFU Search for Dynamical Drivers of Nuclear Activity. I. Reduction Pipeline and Galaxy Catalog

    Full text link
    Using the Inamori Magellan Areal Camera and Spectrograph (IMACS) integral-field unit (IFU) on the 6.5m Magellan telescope, we have designed the first statistically significant investigation of the two-dimensional distribution and kinematics of ionized gas and stars in the central kiloparsec regions of a well-matched sample of Seyfert and inactive control galaxies selected from the Sloan Digital Sky Survey. The goals of the project are to use the fine spatial sampling (0.2 arcsec/pixel) and large wavelength coverage (4000-7000A) of the IMACS-IFU to search for dynamical triggers of nuclear activity in the central region where active galactic nucleus (AGN) activity and dynamical timescales become comparable, to identify and assess the impact of AGN-driven outflows on the host galaxy and to provide a definitive sample of local galaxy kinematics for comparison with future three-dimensional kinematic studies of high-redshift systems. In this paper, we provide the first detailed description of the procedure to reduce and calibrate data from the IMACS-IFU in `long mode' to obtain two-dimensional maps of the distribution and kinematics of ionized gas and stars. The sample selection criteria are presented, observing strategy described and resulting maps of the sample galaxies presented along with a description of the observed properties of each galaxy and the overall observed properties of the sample.Comment: 62 pages. 41 figures. 5 tables. Accepted for publication in ApJS. High-resolution version available at: http://www.astro.ljmu.ac.uk/~pbw/IMACS-IFU/IMACS-1-highRes.pd
    • …
    corecore