13 research outputs found

    Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization

    Full text link
    Beam orientation optimization (BOO) is a key component in the process of IMRT treatment planning. It determines to what degree one can achieve a good treatment plan quality in the subsequent plan optimization process. In this paper, we have developed a BOO algorithm via adaptive l_1 minimization. Specifically, we introduce a sparsity energy function term into our model which contains weighting factors for each beam angle adaptively adjusted during the optimization process. Such an energy term favors small number of beam angles. By optimizing a total energy function containing a dosimetric term and the sparsity term, we are able to identify the unimportant beam angles and gradually remove them without largely sacrificing the dosimetric objective. In one typical prostate case, the convergence property of our algorithm, as well as the how the beam angles are selected during the optimization process, is demonstrated. Fluence map optimization (FMO) is then performed based on the optimized beam angles. The resulted plan quality is presented and found to be better than that obtained from unoptimized (equiangular) beam orientations. We have further systematically validated our algorithm in the contexts of 5-9 coplanar beams for 5 prostate cases and 1 head and neck case. For each case, the final FMO objective function value is used to compare the optimized beam orientations and the equiangular ones. It is found that, our BOO algorithm can lead to beam configurations which attain lower FMO objective function values than corresponding equiangular cases, indicating the effectiveness of our BOO algorithm.Comment: 19 pages, 2 tables, and 5 figure

    GPU-based Fast Low-dose Cone Beam CT Reconstruction via Total Variation

    Full text link
    Cone-beam CT (CBCT) has been widely used in image guided radiation therapy (IGRT) to acquire updated volumetric anatomical information before treatment fractions for accurate patient alignment purpose. However, the excessive x-ray imaging dose from serial CBCT scans raises a clinical concern in most IGRT procedures. The excessive imaging dose can be effectively reduced by reducing the number of x-ray projections and/or lowering mAs levels in a CBCT scan. The goal of this work is to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multi-grid technique is also employed. We test our CBCT reconstruction algorithm on a digital NCAT phantom and a head-and-neck patient case. The performance under low mAs is also validated using a physical Catphan phantom and a head-and-neck Rando phantom. It is found that 40 x-ray projections are sufficient to reconstruct CBCT images with satisfactory quality for IGRT patient alignment purpose. Phantom experiments indicated that CBCT images can be successfully reconstructed with our algorithm under as low as 0.1 mAs/projection level. Comparing with currently widely used full-fan head-and-neck scanning protocol of about 360 projections with 0.4 mAs/projection, it is estimated that an overall 36 times dose reduction has been achieved with our algorithm. Moreover, the reconstruction time is about 130 sec on an NVIDIA Tesla C1060 GPU card, which is estimated ~100 times faster than similar iterative reconstruction approaches.Comment: 20 pages, 10 figures, Paper was revised and more testing cases were added

    Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    Full text link
    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms are implemented on GPU to achieve a high computational efficiency. The reconstruction algorithm and the enhancement algorithm generate visually similar 4D-CBCT images, both better than the FDK results. Quantitative evaluations indicate that, compared with the FDK results, our reconstruction method improves contrast-to-noise-ratio (CNR) by a factor of 2.56~3.13 and our enhancement method increases the CNR by 2.75~3.33 times. The enhancement method also removes over 80% of the streak artifacts from the FDK results. The total computation time is ~460 sec for the reconstruction algorithm and ~610 sec for the enhancement algorithm on an NVIDIA Tesla C1060 GPU card.Comment: 20 pages, 3 figures, 2 table

    GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    Full text link
    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512\times512\times70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstrct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of modulation-transfer-function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Optimization of Process Parameters and Analysis of Microstructure and Properties of 18Ni300 by Selective Laser Melting

    No full text
    In this research, we studied the influence of process parameters on the quality of selective laser melting of 18Ni300 maraging steel. The effects of laser power and scanning speed on the relative density and hardness of 18Ni300 were studied by single-factor experiment and the orthogonal experimental method. The relative optimal process parameters of 18Ni300 were obtained when the layer thickness was 0.03 mm, and the hatch space was 0.1 mm. The microstructures and mechanical properties of the samples formed under different process parameters were characterized. The results showed that the optimal hardness and relative density of the sample were 44.7 HRC and 99.98% when the laser power was 230 W and the scanning speed was 1100 mm/s, respectively; the microstructure of the material was uniform and dense, exhibiting few pores. Some columnar crystals appeared along the boundary of the molten pool due to vertical epitaxial growth. The orientation of fine grains at the boundary of the molten pool was random, and some coarse columnar crystals in the molten pool exhibited a certain orientational preference along the &lt;001&gt; orientation. In the case of optimal process parameters, the SLM-formed 18Ni300 was composed of 99.5% martensite and 0.5% retained austenite; the indentation hardness was distributed in the range of 3.2&ndash;5 GPa. The indentation modulus was between 142.8&ndash;223.4 GPa, exhibiting stronger fluctuations than the indentation hardness. The sample&rsquo;s mechanical properties showed obvious anisotropy, while the tensile fracture characteristics exhibited necking. The tensile fracture morphology was ductile, and large equiaxed dimples and holes could be observed in the fiber area, accompanied by tearing characteristics

    Synthesis of Fe2+ Substituted High-Performance LiMn1&minus;xFexPO4/C (x = 0, 0.1, 0.2, 0.3, 0.4) Cathode Materials for Lithium-Ion Batteries via Sol-Gel Processes

    No full text
    A series of carbon-coated LiMn1&minus;xFexPO4 (x = 0, 0.1, 0.2, 0.3, 0.4) materials are successfully constructed using glucose as carbon sources via sol-gel processes. The morphology of the synthesized material particles are more regular and particle sizes are more homogeneous. The carbon-coated LiMn0.8Fe0.2PO4 material obtains the discharge specific capacity of 152.5 mAh&middot;g&minus;1 at 0.1 C rate and its discharge specific capacity reaches 95.7 mAh&middot;g&minus;1 at 5 C rate. Iron doping offers a viable way to improve the electronic conductivity and lattice defects of materials, as well as improving transmission kinetics, thereby improving the rate performance and cycle performance of materials, which is an effective method to promote the electrical properties
    corecore