Optimization of Process Parameters and Analysis of Microstructure and Properties of 18Ni300 by Selective Laser Melting

Abstract

In this research, we studied the influence of process parameters on the quality of selective laser melting of 18Ni300 maraging steel. The effects of laser power and scanning speed on the relative density and hardness of 18Ni300 were studied by single-factor experiment and the orthogonal experimental method. The relative optimal process parameters of 18Ni300 were obtained when the layer thickness was 0.03 mm, and the hatch space was 0.1 mm. The microstructures and mechanical properties of the samples formed under different process parameters were characterized. The results showed that the optimal hardness and relative density of the sample were 44.7 HRC and 99.98% when the laser power was 230 W and the scanning speed was 1100 mm/s, respectively; the microstructure of the material was uniform and dense, exhibiting few pores. Some columnar crystals appeared along the boundary of the molten pool due to vertical epitaxial growth. The orientation of fine grains at the boundary of the molten pool was random, and some coarse columnar crystals in the molten pool exhibited a certain orientational preference along the <001> orientation. In the case of optimal process parameters, the SLM-formed 18Ni300 was composed of 99.5% martensite and 0.5% retained austenite; the indentation hardness was distributed in the range of 3.2–5 GPa. The indentation modulus was between 142.8–223.4 GPa, exhibiting stronger fluctuations than the indentation hardness. The sample’s mechanical properties showed obvious anisotropy, while the tensile fracture characteristics exhibited necking. The tensile fracture morphology was ductile, and large equiaxed dimples and holes could be observed in the fiber area, accompanied by tearing characteristics

    Similar works