4,892 research outputs found

    Just Compensation: A No-Fault Proposal for Research-Related Injuries

    Get PDF
    Biomedical research, no matter how well designed and ethically conducted, carries uncertainties and exposes participants to risk of injury. Research injuries can range from the relatively minor to those that result in hospitalization, permanent disability, or even death. Participants might also suffer a range of economic harms related to their injuries. Unlike the vast majority of developed countries, which have implemented no-fault compensation systems, the United States continues to rely on the tort system to compensate injured research participants—an approach that is no longer morally defensible. Despite decades of US advisory panels advocating for no-fault compensation, little progress has been made. Accordingly, this article proposes a novel and necessary no-fault compensation system, grounded in the ethical notion of compensatory justice. This first-of-its-kind concrete proposal aims to treat like cases alike, offer fair compensation, and disburse compensation with maximum efficiency and minimum administrative cost. It also harmonizes national and international approaches—an increasingly important goal as research becomes more globalized, multi-site trials grow in number, and institutions and sponsors in the United States move to single-IRB review

    Collaborative Research: Research and Curriculum Development in Thermal Physics

    Get PDF
    This project is a continuation of an ongoing program of coordinated research and research-based curriculum development in thermal physics, primarily in the advanced-level undergraduate courses. Data are gathered using one-on-one student interviews, written pre- and post-test questions, and multiple-choice surveys. The research is then applied to the development of curricular materials intended to improve student understanding in a manner consistent with active-learning methods previously shown to be effective in physics instruction. Prior support has resulted in the development of several interview protocols, diagnostic questions, and survey questions. Project staff have identified several specific conceptual difficulties in thermal physics, and have developed some preliminary curricular materials that have been pilot tested at the home institutions to address these difficulties. This project is adding to the existing data corpus and extending existing work and products to new topics in thermal physics. Existing materials and materials being developed during this project are being evaluated for their effectiveness at addressing student difficulties identified through research. Ancillary materials that integrate our curricular materials more fully into courses and provide instructors with background information and assessment questions are being developed. A set of supporting materials, including pre- and post-tests, homework exercises, and a brief instructors\u27 guide with background on the content and our research findings as well as suggestions for implementation, are being prepared. Materials are applicable to courses taught from a classical thermodynamics and/or a statistical mechanics perspective. With its sharp focus on upper-division courses, this project is expanding the applicability of standard physics education research methods already widely used in introductory courses. Results from this aspect of the project are of great interest to the physics education research community and to instructors of advanced physics courses. The dissemination of both research results and of curricular materials in publications, in presentations at national and international meetings of physicists, physics educators and education researchers, and via pilot testing at participating institutions is contributing to the improvement of instruction in thermal physics nationally and internationally. There are additional interdisciplinary components to this work. One focus of both the research and the curricular materials is the connections between the physics and associated mathematics. In addition, results of the investigations in physics courses are being compared to the results from analogous courses in chemistry, engineering, and geological sciences. The aim is to compare the prevalence and persistence of specific difficulties or beliefs among these populations and to explore the extent to which the different discipline-specific approaches and instructional strategies affect student learning of thermodynamics

    Costs and benefits of a subtype-specific surveillance system for identifying Escherichia coli O157:H7 outbreaks.

    Get PDF
    We assessed the societal costs and benefits of a subtype-specific surveillance system for identifying outbreak-associated Escherichia coli O157:H7 infections. Using data from Colorado, we estimated that if it averted five cases annually, the system would recover all its costs

    Electrically tunable multi-terminal SQUID-on-tip

    Full text link
    We present a new nanoscale superconducting quantum interference device (SQUID) whose interference pattern can be shifted electrically in-situ. The device consists of a nanoscale four-terminal/four-junction SQUID fabricated at the apex of a sharp pipette using a self-aligned three-step deposition of Pb. In contrast to conventional two-terminal/two-junction SQUIDs that display optimal sensitivity when flux biased to about a quarter of the flux quantum, the additional terminals and junctions allow optimal sensitivity at arbitrary applied flux, thus eliminating the magnetic field "blind spots". We demonstrate spin sensitivity of 5 to 8 ÎŒB/Hz1/2\mu_B/\text{Hz}^{1/2} over a continuous field range of 0 to 0.5 T, with promising applications for nanoscale scanning magnetic imaging
    • 

    corecore