11 research outputs found

    ZNHIT3 is defective in PEHO syndrome, a severe encephalopathy with cerebellar granule neuron loss

    Get PDF
    Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.Peer reviewe

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure.

    Get PDF
    SummaryAfter neural tube closure, amniotic fluid (AF) captured inside the neural tube forms the nascent cerebrospinal fluid (CSF). Neuroepithelial stem cells contact CSF-filled ventricles, proliferate, and differentiate to form the mammalian brain, while neurogenic placodes, which generate cranial sensory neurons, remain in contact with the AF. Using in vivo ultrasound imaging, we quantified the expansion of the embryonic ventricular-CSF space from its inception. We developed tools to obtain pure AF and nascent CSF, before and after neural tube closure, and to define how the AF and CSF proteomes diverge during mouse development. Using embryonic neural explants, we demonstrate that age-matched fluids promote Sox2-positive neurogenic identity in developing forebrain and olfactory epithelia. Nascent CSF also stimulates SOX2-positive self-renewal of forebrain progenitor cells, some of which is attributable to LIFR signaling. Our Resource should facilitate the investigation of fluid-tissue interactions during this highly vulnerable stage of early brain development

    MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus.

    No full text
    The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.(LM2018129 funded by MEYS CR), Czech Centre for Phenogenomics (LM2015040), Higher quality and capacity of transgenic model breeding (by MEYS and ERDF, OP RDI CZ.1.05/2.1.00/19.0395), Czech Centre for Phenogenomics: developing towards translation research (by MEYS and ESIF, OP RDE CZ.02.1.01/0.0/0.0/16_013/0001789), BCH viral core for AAV production. The collaboration between Masaryk University and Karolinska Institutet (KI-MU program), was co-financed by the European Social Fund and the state budget of the Czech Republic (CZ.1.07/2.3.00/20.0180). Funding to the VB lab was obtained from Neuron Fund for Support of Science (23/2016), and Czech Science Foundation (GA17- 16680S). Work in the EA lab was supported by the Swedish Research Council (VR projects: DBRM, 2011-3116, 2011-3318 and 2016-01526), Swedish Foundation for Kaiser et al.,Strategic Research (SRL program and SLA SB16-0065), European Commission (NeuroStemcellRepair), Karolinska Institutet (SFO Strat Regen, Senior grant 2018), Hjärnfonden (FO2015:0202 and FO2017-0059) and Cancerfonden (CAN 2016/572) foundations. KK was supported by Masaryk University (MUNI/E/0965/2016). RvA acknowledges funding support from the University of Amsterdam (MacGillavry fellowship), KWF Kankerbestrijding (Dutch Cancer Society, career development award ANW 2013-6057) and NWO (Netherlands Science Foundation, VIDI 864.13.002). Work in the OM lab is supported by the Czech Science Foundation (18- 00514S). ZK acknowledges funding support from GACR 18-20759S. RA Barker is supported by an NIHR funded Biomedical Research Centre at Cambridge University Hospital and the WT-MRC Cambridge Stem Cell Institute. The Lehtinen laboratory was supported by the Reagan Sloane Shanley Research Internship (ND), OFD/BTREC/CTREC Faculty Development Fellowship Award (RMF), NIH R01 NS088566 (MKL), the New York Stem Cell Foundation (MKL); and BCH IDDRC 1U54HD090255. MK Lehtinen is a New York Stem Cell Foundation – Robertson Investigator

    Development and functions of the choroid plexus–cerebrospinal fluid system

    No full text
    The choroid plexus (ChP) is the principal source of cerebrospinal fluid (CSF), which has accepted roles as a fluid cushion and a sink for nervous system waste in vertebrates. Various animal models have provided insight into how the ChP–CSF system develops and matures. In addition, recent studies have uncovered new, active roles for this dynamic system in the regulation of neural stem cells, critical periods and the overall health of the nervous system. Together, these findings have brought about a paradigm shift in our understanding of brain development and health, and have stimulated new initiatives for the treatment of neurological disease

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit
    corecore