62 research outputs found
Ancestry as a potential modifier of gene expression in breast tumors from Colombian women
Background
Hispanic/Latino populations are a genetically admixed and heterogeneous group, with variable fractions of European, Indigenous American and African ancestries. The molecular profile of breast cancer has been widely described in non-Hispanic Whites but equivalent knowledge is lacking in Hispanic/Latinas. We have previously reported that the most prevalent breast cancer intrinsic subtype in Colombian women was Luminal B as defined by St. Gallen 2013 criteria. In this study we explored ancestry-associated differences in molecular profiles of Luminal B tumors among these highly admixed women.
Methods
We performed whole-transcriptome RNA-seq analysis in 42 Luminal tumors (21 Luminal A and 21 Luminal B) from Colombian women. Genetic ancestry was estimated from a panel of 80 ancestry-informative markers (AIM). We categorized patients according to Luminal subtype and to the proportion of European and Indigenous American ancestry and performed differential expression analysis comparing Luminal B against Luminal A tumors according to the assigned ancestry groups.
Results
We found 5 genes potentially modulated by genetic ancestry: ERBB2 (log2FC = 2.367, padj<0.01), GRB7 (log2FC = 2.327, padj<0.01), GSDMB (log2FC = 1.723, padj<0.01, MIEN1 (log2FC = 2.195, padj<0.01 and ONECUT2 (log2FC = 2.204, padj<0.01). In the replication set we found a statistical significant association between ERBB2 expression with Indigenous American ancestry (p = 0.02, B = 3.11). This association was not biased by the distribution of HER2+ tumors among the groups analyzed.
Conclusions
Our results suggest that genetic ancestry in Hispanic/Latina women might modify ERBB2 gene expression in Luminal tumors. Further analyses are needed to confirm these findings and explore their prognostic value.PLoS Journal
Comparative analysis of miRNA profile in human dendritic cells infected with respiratory syncytial virus and human metapneumovirus
Abstract Objective Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are responsible for respiratory diseases, mostly in children. Despite the clinical and epidemiological similarities between these two pneumoviruses, they elicit different immune responses. This work aims to further our understanding of the differential immune response induced by these respiratory viruses by determining the changes of small non-coding RNAs (miRNAs), which regulate gene expression and are involved in numerous cellular processes including the immune system. Results In the present study, we analyzed the expression of miRNA transcripts of human dendritic cells infected with RSV or HMPV by high throughput sequencing using Illumina sequencing technology. Further validation of miRNA expression by quantitative polymerase chain reaction indicated that HMPV infection up-regulated the expression of 2 miRNAs (hsa-miR-182-5p and hsa-miR-4634), while RSV infection induced significant expression of 3 miRNAs (hsa-miR-4448, hsa-miR-30a-5p and hsa-miR-4634). The predominant miRNA induced by both viruses was hsa-miR-4634
Global transcript structure resolution of high gene density genomes through multi-platform data integration.
Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome
Examining lncRNAs in highly transcribed, gene-dense genomes
peer reviewedRecent studies using high-throughput methods have revealed an extraordinarily complex transcriptional landscape across the genomes of multiple herpesviruses, with noncoding RNA transcripts overlapping and antisense to protein-coding genes as well as arising from presumed intergenic regions. This pervasive transcription across dense viral genomes presents challenges in correctly delineating individual transcripts and their functions. We have used Pacific Biosciences SMRT sequencing and Illumina RNA-seq to generate detailed transcriptome annotation for the ubiquitous human gammaherpesvirus Epstein-Barr virus (EBV) during lytic reactivation. We report the structures of over 100 novel polyadenylated transcripts, more than doubling the number of known EBV lytic genes. More detailed investigations into several specific transcripts reveal viral “late” gene kinetics, suggesting roles in processes such as viral genome packaging or virion assembly, though functional assays indicate that some of these transcripts influence viral and cellular mRNA levels. These multifold novel transcripts likely possess as diverse an array of functions as their protein-coding counterparts and could represent the key to elucidating some of the enduring mysteries of the herpesvirus lytic cycle, such as control of late gene expression and virion envelopment and egress
Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects
Previously we described a reliable method based on immunodepletion for isolating mesenchymal stem cells (MSCs) from murine bone marrow and showed that, after intracranial transplantation, the cells migrated throughout forebrain and cerebellum and adopted neural cell fates. Here we systemically administered MSCs purified by immunodepletion from male bleomycin (BLM)-resistant BALB/c mice into female BLM-sensitive C57BL/6 recipients and quantified engraftment levels in lung by real-time PCR. Male DNA accounted for 2.21 × 10(-5)% of the total lung DNA in control-treated mice but was increased 23-fold (P = 0.05) in animals exposed to BLM before MSC transplantation. Fluorescence in situ hybridization revealed that engrafted male cells were localized to areas of BLM-induced injury and exhibited an epithelium-like morphology. Moreover, purification of type II epithelial cells from the lungs of transplant recipients resulted in a 3-fold enrichment of male, donor-derived cells as compared with whole lung tissue. MSC administration immediately after exposure to BLM also significantly reduced the degree of BLM-induced inflammation and collagen deposition within lung tissue. Collectively, these studies demonstrate that murine MSCs home to lung in response to injury, adopt an epithelium-like phenotype, and reduce inflammation and collagen deposition in lung tissue of mice challenged with BLM
MicroRNA miR-155 Inhibits Bone Morphogenetic Protein (BMP) Signaling and BMP-Mediated Epstein-Barr Virus Reactivation▿ †
MicroRNA miR-155 is expressed at elevated levels in human cancers including cancers of the lung, breast, colon, and a subset of lymphoid malignancies. In B cells, miR-155 is induced by the oncogenic latency gene expression program of the human herpesvirus Epstein-Barr virus (EBV). Two other oncogenic herpesviruses, Kaposi's sarcoma-associated herpesvirus and Marek's disease virus, encode functional homologues of miR-155, suggesting a role for this microRNA in the biology and pathogenesis of these viruses. Bone morphogenetic protein (BMP) signaling is involved in an array of cellular processes, including differentiation, growth inhibition, and senescence, through context-dependent interactions with multiple signaling pathways. Alteration of this pathway contributes to a number of disease states including cancer. Here, we show that miR-155 targets the 3′ untranslated region of multiple components of the BMP signaling cascade, including SMAD1, SMAD5, HIVEP2, CEBPB, RUNX2, and MYO10. Targeting of these mediators results in the inhibition of BMP2-, BMP6-, and BMP7-induced ID3 expression as well as BMP-mediated EBV reactivation in the EBV-positive B-cell line, Mutu I. Further, miR-155 inhibits SMAD1 and SMAD5 expression in the lung epithelial cell line A549, it inhibits BMP-mediated induction of the cyclin-dependent kinase inhibitor p21, and it reverses BMP-mediated cell growth inhibition. These results suggest a role for miR-155 in controlling BMP-mediated cellular processes, in regulating BMP-induced EBV reactivation, and in the inhibition of antitumor effects of BMP signaling in normal and virus-infected cells
Epstein-Barr virus and human herpesvirus 6 detection in a non-Hodgkin's diffuse large B-cell lymphoma cohort by using RNA sequencing.
peer reviewedComprehensive virome analysis of RNA sequence (RNA-seq) data sets from 118 non-Hodgkin's B-cell lymphomas revealed a small subset that is positive for Epstein-Barr virus (EBV) or human herpesvirus 6B (HHV-6B), with one coinfection. EBV transcriptome analysis revealed expression of the latency genes RPMS1, LMP1, and LMP2, with one sample additionally showing a high level of early lytic expression and another sample showing a high level of EBNA2 expression. HHV-6B transcriptome analysis revealed that the majority of genes were transcribed
p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.
Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors
STM/STS study of bimetallic nanostructures on silicon surfaces
In this study we examine linear nanostructures consisting of metals of III. (Al, In) and IV. (Sn) group on the Si(001)2×1 surface by means of scanning tunnelling microscopy & spectroscopy. Atoms on the surface align into atomic chains growing perpendicularly to the dimer rows of the surface reconstruction. The chain structure consists of dimers that adsorb in the troughs between the dimer rows of the surface reconstruction. We observe that the chains consist of sequences of homodimers of either elements combining with heterodimers. The InSn chain structure is analysed with regard to theoretical ab-initio calculations of the chain dimer structure. The model is then applied to the Al-Sn system. We observe that the Al-Sn chains tend to consist of aligned heterodimers. The appearance of heterodimers in STM depends on the chemical composition of the neighbouring dimers. We can also observe the tendency of chains to agglomerate and via Sn atoms create quasi periodic 2D structures. The electronic structure of an Al, Sn and mixed AlSn dimer is studied by means of tunnelling spectroscopy. Despite its small, nonzero density of states on the Fermi energy, the character of the mixed dimer appears to be rather non-conductive
- …