6 research outputs found

    The Advanced Virgo+ status

    No full text
    International audienceThe gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4).The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies.The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects).This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF
    Results are presented for a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-Wave Observatory data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run. In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive subband, starting at 256.06 Hz, we report an upper limit on gravitational wave strain (at 95% confidence) of h 95 % 0 = 6.16 × 10 − 26 , assuming the orbital inclination angle takes its electromagnetically restricted value ι = 4 4 ° . The upper limits on gravitational wave strain reported here are on average a factor of ∼ 3 lower than in the second observing run HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain subbands, assuming ι = 4 4 °
    corecore