4,411 research outputs found

    The 51.8 micron (0 3) line emission observed in four galactic H 2 regions

    Get PDF
    The (0 III) 51.8 microns line from four H II regions, M42, M17, W51 and NGC 6375A was detected. Respective line strengths are 7 x 10 to the minus 15 power, 1.0 x 10 to the minus 14 power, 2.1 x 10 to the minus 15 power and 2.6 x 10 to the minus 15 power watt cm/2. Observations are consistent with previously reported line position and place the line at 51.80 + or 0.05 micron. When combined with the 88.35 microns (0 III) reported earlier, clumping seems to be an important factor in NGC 6375A and M42 and to a lesser extent in W51 and M17. The combined data also suggest an (0 III) abundance of approximately 3 x 0.0001 sub n e' a factor of 2 greater than previously assumed

    Towards a Precision Cosmology from Starburst Galaxies at z>2

    Full text link
    This work investigates the use of a well-known empirical correlation between the velocity dispersion, metallicity, and luminosity in H beta of nearby HII galaxies to measure the distances to HII-like starburst galaxies at high redshifts. This correlation is applied to a sample of 15 starburst galaxies with redshifts between z=2.17 and z=3.39 to constrain Omega_m, using data available from the literature. A best-fit value of Omega_m = 0.21 +0.30 -0.12 in a Lambda-dominated universe and of Omega_m = 0.11 +0.37 -0.19 in an open universe is obtained. A detailed analysis of systematic errors, their causes, and their effects on the values derived for the distance moduli and Omega_m is carried out. A discussion of how future work will improve constraints on Omega_m by reducing the errors is also presented.Comment: 7 pages, 3 figures, accepted for publication in MNRA

    Observations of the 51.8 micron (O III) emission line in Orion

    Get PDF
    The 51.8 micron fine structure transition P2:3P2 3P1 for doubly ionized oxygen was observed in the Orion nebula. The observed line strength is of 5 plus or minus 3 times 10 to the minus 15th power watt/sq cm is in good agreement with theoretical predictions. Observations are consistent with the newly predicted 51.8 micron line position. The line lies close to an atmospheric water vapor feature at 51.7 micron, but is sufficiently distant so that corrections for this feature are straightforward. Observations of the 51.8 (O III) line are particularly important since the previously discovered 88 micron line from the same ion also is strong. This pair of lines should, therefore, yield new data about densities in observed H II regions; or else, if density data already are available from radio or other observations, the lines can be used to determine the differential dust absorption between 52 and 88 micron in front of heavily obscured regions

    Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    Full text link
    Trends observed in galaxies, such as the Gao \& Solomon relation, suggest a linear relation between the star formation rate and the mass of dense gas available for star formation. Validation of such relations requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J=1J=1--0) transition is unambiguously associated with gas at H2\rm{}H_2 densities 104 cm3\gg{}10^4~\rm{}cm^{-3}. If so, the mass of gas at densities 104 cm3\gg{}10^4~\rm{}cm^{-3} could be inferred from the luminosity of this emission line, LHCN(10)L_{\rm{}HCN\,(1\text{--}0)}. Here we use observations of the Orion~A molecular cloud to show that the HCN (J=1J=1--0) line traces much lower densities 103 cm3\sim{}10^3~\rm{}cm^{-3} in cold sections of this molecular cloud, corresponding to visual extinctions AV6 magA_V\approx{}6~\rm{}mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN(10)L_{\rm{}HCN\,(1\text{--}0)} in star--forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100~GHz (also including 12CO\rm{}^{12}CO, 13CO\rm{}^{13}CO, C18O\rm{}C^{18}O, CN, and CCH), N2H+\rm{}N_2H^+ is the only species clearly associated with rather dense gas.Comment: accepted to A&A Letter

    Preparation of microscopic cross sections of U235 for reactor calculations

    Get PDF
    Preparation of microscopic cross section of uranium 235 for high temperature reactor calculation

    Physical properties of outflows: Comparing CO and H2O based parameters in Class 0 sources

    Get PDF
    Context. The observed physical properties of outflows from low-mass sources put constraints on possible ejection mechanisms. Historically, these quantities have been derived from CO using ground-based observations. It is thus important to investigate whether parameters such as momentum rate (thrust) and mechanical luminosity (power) are the same when different molecular tracers are used. Aims. We aim at determining the outflow momentum, dynamical time-scale, thrust, energy and power using CO and H2O as tracers of outflow activity. Methods. Within the framework of the WISH key program, three molecular outflows from Class 0 sources have been mapped using the HIFI instrument aboard Herschel. We use these observations together with previously published H2 data to infer the physical properties of the outflows. We compare the physical properties derived here with previous estimates based on CO observations. Results. Inspection of the spatial distribution of H2O and H2 confirms that these molecules are co-spatial. The most prominent emission peaks in H2 coincide with strong H2O emission peaks and the estimated widths of the flows when using the two tracers are comparable. Conclusions. For the momentum rate and the mechanical luminosity, inferred values are independent of which tracer that is used, i.e., the values agree to within a factor of 4 and 3 respectively.Comment: Accepted for publication in A&A, 5 pages, 2 figure

    The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies

    Full text link
    We present CO observations of a large sample of ultraluminous IR galaxies out to z = 0.3. Most of the galaxies are interacting, but not completed mergers. All but one have high CO(1-0) luminosities, log(Lco [K-km/s-pc^2]) = 9.92 +/- 0.12. The dispersion in Lco is only 30%, less than that in the FIR luminosity. The integrated CO intensity correlates Strongly with the 100 micron flux density, as expected for a black body model in which the mid and far IR radiation are optically thick. We use this model to derive sizes of the FIR and CO emitting regions and the enclosed dynamical masses. Both the IR and CO emission originate in regions a few hundred parsecs in radius. The median value of Lfir/Lco = 160 Lsun/(K-km/s-pc^2), within a factor of two of the black body limit for the observed FIR temperatures. The entire ISM is a scaled up version of a normal galactic disk with densities a factor of 100 higher, making even the intercloud medium a molecular region. Using three different techniques of H2 mass estimation, we conclude that the ratio of gas mass to Lco is about a factor of four lower than for Galactic molecular clouds, but that the gas mass is a large fraction of the dynamical mass. Our analysis of CO emission reduces the H2 mass from previous estimates of 2-5e10 Msun to 0.4-1.5e10 Msun, which is in the range found for molecular gas rich spiral galaxies. A collision involving a molecular gas rich spiral could lead to an ultraluminous galaxy powered by central starbursts triggered by the compression of infalling preexisting GMC's.Comment: 34 pages LaTeX with aasms.sty, 14 Postscript figures, submitted to ApJ Higher quality versions of Figs 2a-f and 7a-c available by anonymous FTP from ftp://sbast1.ess.sunysb.edu/solomon/

    The Initial Mass Functions in the Super-Star-Clusters NGC 1569A and NGC 1705-1

    Get PDF
    I use recent photometric and stellar velocity dispersion measurements of the super-star-clusters (SSCs) NGC 1569A and NGC 1705-1 to determine their present-day luminosity/mass (L_V/M) ratios. I then use the inferred L_V/M ratios, together with population synthesis models of evolving star-clusters, to constrain the initial-mass-functions (IMFs) in these objects. I find that (L_V/M)_solar=28.9 in 1569A, and (L_V/M)_solar=126 in 1705-1. It follows that in 1569A the IMF is steep with alpha~2.5 for m**(-alpha)dm IMFs which extend to 0.1 M_sun. This implies that most of the stellar mass in 1569A is contained in low-mass (< 1 M_sun) stars. However, in 1705-1 the IMF is either flat, with alpha<2$, or it is truncated at a lower mass-limit between 1 and 3 M_sun. I compare the inferred IMFs with the mass functions (MFs) of Galactic globular clusters. It appears that 1569A has a sufficient reservoir of low-mass stars for it to plausibly evolve into an object similar to Galactic globular clusters. However, the apparent deficiency of low-mass stars in 1705-1 may make it difficult for this SSC to become a globular cluster. If low-mass stars do dominate the cluster mass in 1705-1, the large L_V/M ratio in this SSC may be evidence that the most massive stars have formed close to the cluster cores.Comment: ApJ, in press. 19 Pages, Latex; [email protected]

    High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application

    Get PDF
    Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements
    corecore