4,411 research outputs found
The 51.8 micron (0 3) line emission observed in four galactic H 2 regions
The (0 III) 51.8 microns line from four H II regions, M42, M17, W51 and NGC 6375A was detected. Respective line strengths are 7 x 10 to the minus 15 power, 1.0 x 10 to the minus 14 power, 2.1 x 10 to the minus 15 power and 2.6 x 10 to the minus 15 power watt cm/2. Observations are consistent with previously reported line position and place the line at 51.80 + or 0.05 micron. When combined with the 88.35 microns (0 III) reported earlier, clumping seems to be an important factor in NGC 6375A and M42 and to a lesser extent in W51 and M17. The combined data also suggest an (0 III) abundance of approximately 3 x 0.0001 sub n e' a factor of 2 greater than previously assumed
Towards a Precision Cosmology from Starburst Galaxies at z>2
This work investigates the use of a well-known empirical correlation between
the velocity dispersion, metallicity, and luminosity in H beta of nearby HII
galaxies to measure the distances to HII-like starburst galaxies at high
redshifts. This correlation is applied to a sample of 15 starburst galaxies
with redshifts between z=2.17 and z=3.39 to constrain Omega_m, using data
available from the literature. A best-fit value of Omega_m = 0.21 +0.30 -0.12
in a Lambda-dominated universe and of Omega_m = 0.11 +0.37 -0.19 in an open
universe is obtained. A detailed analysis of systematic errors, their causes,
and their effects on the values derived for the distance moduli and Omega_m is
carried out. A discussion of how future work will improve constraints on
Omega_m by reducing the errors is also presented.Comment: 7 pages, 3 figures, accepted for publication in MNRA
Observations of the 51.8 micron (O III) emission line in Orion
The 51.8 micron fine structure transition P2:3P2 3P1 for doubly ionized oxygen was observed in the Orion nebula. The observed line strength is of 5 plus or minus 3 times 10 to the minus 15th power watt/sq cm is in good agreement with theoretical predictions. Observations are consistent with the newly predicted 51.8 micron line position. The line lies close to an atmospheric water vapor feature at 51.7 micron, but is sufficiently distant so that corrections for this feature are straightforward. Observations of the 51.8 (O III) line are particularly important since the previously discovered 88 micron line from the same ion also is strong. This pair of lines should, therefore, yield new data about densities in observed H II regions; or else, if density data already are available from radio or other observations, the lines can be used to determine the differential dust absorption between 52 and 88 micron in front of heavily obscured regions
Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies
Trends observed in galaxies, such as the Gao \& Solomon relation, suggest a
linear relation between the star formation rate and the mass of dense gas
available for star formation. Validation of such relations requires the
establishment of reliable methods to trace the dense gas in galaxies. One
frequent assumption is that the HCN (--0) transition is unambiguously
associated with gas at densities . If so,
the mass of gas at densities could be inferred from
the luminosity of this emission line, . Here we
use observations of the Orion~A molecular cloud to show that the HCN (--0)
line traces much lower densities in cold sections of
this molecular cloud, corresponding to visual extinctions
. We also find that cold and dense gas in a cloud like
Orion produces too little HCN emission to explain
in star--forming galaxies, suggesting that galaxies might contain a hitherto
unknown source of HCN emission. In our sample of molecules observed at
frequencies near 100~GHz (also including , ,
, CN, and CCH), is the only species clearly
associated with rather dense gas.Comment: accepted to A&A Letter
Preparation of microscopic cross sections of U235 for reactor calculations
Preparation of microscopic cross section of uranium 235 for high temperature reactor calculation
Physical properties of outflows: Comparing CO and H2O based parameters in Class 0 sources
Context. The observed physical properties of outflows from low-mass sources
put constraints on possible ejection mechanisms. Historically, these quantities
have been derived from CO using ground-based observations. It is thus important
to investigate whether parameters such as momentum rate (thrust) and mechanical
luminosity (power) are the same when different molecular tracers are used.
Aims. We aim at determining the outflow momentum, dynamical time-scale, thrust,
energy and power using CO and H2O as tracers of outflow activity. Methods.
Within the framework of the WISH key program, three molecular outflows from
Class 0 sources have been mapped using the HIFI instrument aboard Herschel. We
use these observations together with previously published H2 data to infer the
physical properties of the outflows. We compare the physical properties derived
here with previous estimates based on CO observations. Results. Inspection of
the spatial distribution of H2O and H2 confirms that these molecules are
co-spatial. The most prominent emission peaks in H2 coincide with strong H2O
emission peaks and the estimated widths of the flows when using the two tracers
are comparable. Conclusions. For the momentum rate and the mechanical
luminosity, inferred values are independent of which tracer that is used, i.e.,
the values agree to within a factor of 4 and 3 respectively.Comment: Accepted for publication in A&A, 5 pages, 2 figure
The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies
We present CO observations of a large sample of ultraluminous IR galaxies out
to z = 0.3. Most of the galaxies are interacting, but not completed mergers.
All but one have high CO(1-0) luminosities, log(Lco [K-km/s-pc^2]) = 9.92 +/-
0.12. The dispersion in Lco is only 30%, less than that in the FIR luminosity.
The integrated CO intensity correlates Strongly with the 100 micron flux
density, as expected for a black body model in which the mid and far IR
radiation are optically thick. We use this model to derive sizes of the FIR and
CO emitting regions and the enclosed dynamical masses. Both the IR and CO
emission originate in regions a few hundred parsecs in radius. The median value
of Lfir/Lco = 160 Lsun/(K-km/s-pc^2), within a factor of two of the black body
limit for the observed FIR temperatures. The entire ISM is a scaled up version
of a normal galactic disk with densities a factor of 100 higher, making even
the intercloud medium a molecular region. Using three different techniques of
H2 mass estimation, we conclude that the ratio of gas mass to Lco is about a
factor of four lower than for Galactic molecular clouds, but that the gas mass
is a large fraction of the dynamical mass. Our analysis of CO emission reduces
the H2 mass from previous estimates of 2-5e10 Msun to 0.4-1.5e10 Msun, which is
in the range found for molecular gas rich spiral galaxies. A collision
involving a molecular gas rich spiral could lead to an ultraluminous galaxy
powered by central starbursts triggered by the compression of infalling
preexisting GMC's.Comment: 34 pages LaTeX with aasms.sty, 14 Postscript figures, submitted to
ApJ Higher quality versions of Figs 2a-f and 7a-c available by anonymous FTP
from ftp://sbast1.ess.sunysb.edu/solomon/
The Initial Mass Functions in the Super-Star-Clusters NGC 1569A and NGC 1705-1
I use recent photometric and stellar velocity dispersion measurements of the
super-star-clusters (SSCs) NGC 1569A and NGC 1705-1 to determine their
present-day luminosity/mass (L_V/M) ratios. I then use the inferred L_V/M
ratios, together with population synthesis models of evolving star-clusters, to
constrain the initial-mass-functions (IMFs) in these objects.
I find that (L_V/M)_solar=28.9 in 1569A, and (L_V/M)_solar=126 in 1705-1. It
follows that in 1569A the IMF is steep with alpha~2.5 for m**(-alpha)dm IMFs
which extend to 0.1 M_sun. This implies that most of the stellar mass in 1569A
is contained in low-mass (< 1 M_sun) stars. However, in 1705-1 the IMF is
either flat, with alpha<2$, or it is truncated at a lower mass-limit between 1
and 3 M_sun.
I compare the inferred IMFs with the mass functions (MFs) of Galactic
globular clusters. It appears that 1569A has a sufficient reservoir of low-mass
stars for it to plausibly evolve into an object similar to Galactic globular
clusters. However, the apparent deficiency of low-mass stars in 1705-1 may make
it difficult for this SSC to become a globular cluster. If low-mass stars do
dominate the cluster mass in 1705-1, the large L_V/M ratio in this SSC may be
evidence that the most massive stars have formed close to the cluster cores.Comment: ApJ, in press. 19 Pages, Latex; [email protected]
High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application
Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements
- …
