125 research outputs found

    Extensive undertreatment of osteoporosis in older Swedish women

    Get PDF
    Summary In a population-based study of older Swedish women, we investigated the proportion of women treated with osteoporosis medication in relation to the proportion of women eligible for treatment according to national guidelines. We found that only a minority (22%) of those eligible for treatment were prescribed osteoporosis medication. Introduction Fracture rates increase markedly in old age and the incidence of hip fracture in Swedish women is among the highest in the world. Although effective pharmacological treatment is available, treatment rates remain low. Limited data are available regarding treatment rates in relation to fracture risk in a population-based setting in older women. Therefore, we aimed to investigate the proportion of older women eligible for treatment according to Swedish Osteoporosis Society (SvOS) guidelines. Methods A population-based study was performed in Gothenburg in 3028 older women (77.8 ± 1.6 years [mean ± SD]). Bone mineral density of the spine and hip was measured with dual-energy X-ray absorptiometry. Clinical risk factors for fracture and data regarding osteoporosis medication was collected with self-administered questionnaires. Logistic regression was used to evaluate whether the 10-year probability of sustaining a major osteoporotic fracture (FRAX-score) or its components predicted treatment with osteoporosis medication. Results For the 2983 women with complete data, 1107 (37%) women were eligible for treatment using SvOS criteria. The proportion of these women receiving treatment was 21.8%. For women eligible for treatment according to SvOS guidelines, strong predictors for receiving osteoporosis medication were glucocorticoid treatment (odds ratio (95% CI) 2.88 (1.80–4.59)) and prior fracture (2.58 (1.84–3.61)). Conclusion This study demonstrates that a substantial proportion of older Swedish women should be considered for osteoporosis medication given their high fracture risk, but that only a minority receives treatment

    Predictive value of sarcopenia components for all-cause mortality: findings from population-based cohorts

    Get PDF
    Background: Low grip strength and gait speed are associated with mortality. However, investigation of the additional mortality risk explained by these measures, over and above other factors, is limited. Aim: We examined whether grip strength and gait speed improve discriminative capacity for mortality over and above more readily obtainable clinical risk factors. Methods: Participants from the Health, Aging and Body Composition Study, Osteoporotic Fractures in Men Study, and the Hertfordshire Cohort Study were analysed. Appendicular lean mass (ALM) was ascertained using DXA; muscle strength by grip dynamometry; and usual gait speed over 2.4–6 m. Verified deaths were recorded. Associations between sarcopenia components and mortality were examined using Cox regression with cohort as a random effect; discriminative capacity was assessed using Harrell’s Concordance Index (C-index). Results: Mean (SD) age of participants (n = 8362) was 73.8(5.1) years; 5231(62.6%) died during a median follow-up time of 13.3 years. Grip strength (hazard ratio (95% CI) per SD decrease: 1.14 (1.10,1.19)) and gait speed (1.21 (1.17,1.26)), but not ALM index (1.01 (0.95,1.06)), were associated with mortality in mutually-adjusted models after accounting for age, sex, BMI, smoking status, alcohol consumption, physical activity, ethnicity, education, history of fractures and falls, femoral neck bone mineral density (BMD), self-rated health, cognitive function and number of comorbidities. However, a model containing only age and sex as exposures gave a C-index (95% CI) of 0.65(0.64,0.66), which only increased to 0.67(0.67,0.68) after inclusion of grip strength and gait speed. Conclusions: Grip strength and gait speed may generate only modest adjunctive risk information for mortality compared with other more readily obtainable risk factors

    Tissue Effect on Genetic Control of Transcript Isoform Variation

    Get PDF
    Current genome-wide association studies (GWAS) are moving towards the use of large cohorts of primary cell lines to study a disease of interest and to assign biological relevance to the genetic signals identified. Here, we use a panel of human osteoblasts (HObs) to carry out a transcriptomic survey, similar to recent studies in lymphoblastoid cell lines (LCLs). The distinct nature of HObs and LCLs is reflected by the preferential grouping of cell type–specific genes within biologically and functionally relevant pathways unique to each tissue type. We performed cis-association analysis with SNP genotypes to identify genetic variations of transcript isoforms, and our analysis indicates that differential expression of transcript isoforms in HObs is also partly controlled by cis-regulatory genetic variants. These isoforms are regulated by genetic variants in both a tissue-specific and tissue-independent fashion, and these associations have been confirmed by RT–PCR validation. Our study suggests that multiple transcript isoforms are often present in both tissues and that genetic control may affect the relative expression of one isoform to another, rather than having an all-or-none effect. Examination of the top SNPs from a GWAS of bone mineral density show overlap with probeset associations observed in this study. The top hit corresponding to the FAM118A gene was tested for association studies in two additional clinical studies, revealing a novel transcript isoform variant. Our approach to examining transcriptome variation in multiple tissue types is useful for detecting the proportion of genetic variation common to different cell types and for the identification of cell-specific isoform variants that may be functionally relevant, an important follow-up step for GWAS

    Genome-Wide Association Meta-Analysis of Cortical Bone Mineral Density Unravels Allelic Heterogeneity at the RANKL Locus and Potential Pleiotropic Effects on Bone

    Get PDF
    Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMDC associations that had p<1×10−5 in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMDC in all cohorts (overall p = 2×10−14, n = 5739). Each minor allele was associated with a decrease in BMDC of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males −6.77mg/cm3 per C allele, p = 2×10−6; females −2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development

    Genetic Determinants of Circulating Estrogen Levels and Evidence of a Causal Effect of Estradiol on Bone Density in Men.

    Get PDF
    CONTEXT: Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability. OBJECTIVE: To investigate the genetic regulation of serum E2 and E1 in men. DESIGN, SETTING, AND PARTICIPANTS: Genome-wide association study in 11,097 men of European origin from nine epidemiological cohorts. MAIN OUTCOME MEASURES: Genetic determinants of serum E2 and E1 levels. RESULTS: Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, resolving to three independent signals. Two additional independent signals were found on the X chromosome; FAMily with sequence similarity 9, member B (FAM9B), rs5934505 (P = 3.4 × 10-8) and Xq27.3, rs5951794 (P = 3.1 × 10-10). E1 signals were found in CYP19A1 (rs2899472, P = 5.5 × 10-23), in Tripartite motif containing 4 (TRIM4; rs17277546, P = 5.8 × 10-14), and CYP11B1/B2 (rs10093796, P = 1.2 × 10-8). E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). Mendelian randomization analysis suggested a causal effect of serum E2 on BMD in men. A 1 pg/mL genetically increased E2 was associated with a 0.048 standard deviation increase in lumbar spine BMD (P = 2.8 × 10-12). In men and women combined, CYP19A1 alleles associated with higher E2 levels were associated with lower degrees of insulin resistance. CONCLUSIONS: Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels and strengthen the causal importance of E2 for bone health in men. We also report two independent loci on the X-chromosome for E2, and one locus each in TRIM4 and CYP11B1/B2, for E1

    Genetic Determinants of Circulating Estrogen Levels and Evidence of a Causal Effect of Estradiol on Bone Density in Men

    Get PDF
    Context: Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability.Objective: To investigate the genetic regulation of serum E2 and E1 in men.Design, Setting, and Participants: Genome-wide association study in 11,097 men of European origin from nine epidemiological cohorts.Main Outcome Measures: Genetic determinants of serum E2 and E1 levels.Results: Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, resolving to three independent signals. Two additional independent signals were found on the X chromosome; FAMily with sequence similarity 9, member B (FAM9B), rs5934505 (P = 3.4 × 10-8) and Xq27.3, rs5951794 (P = 3.1 × 10-10). E1 signals were found in CYP19A1 (rs2899472, P = 5.5 × 10-23), in Tripartite motif containing 4 (TRIM4; rs17277546, P = 5.8 × 10-14), and CYP11B1/B2 (rs10093796, P = 1.2 × 10-8). E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). Mendelian randomization analysis suggested a causal effect of serum E2 on BMD in men. A 1 pg/mL genetically increased E2 was associated with a 0.048 standard deviation increase in lumbar spine BMD (P = 2.8 × 10-12). In men and women combined, CYP19A1 alleles associated with higher E2 levels were associated with lower degrees of insulin resistance.Conclusions: Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels and strengthen the causal importance of E2 for bone health in men. We also report two independent loci on the X-chromosome for E2, and one locus each in TRIM4 and CYP11B1/B2, for E1

    The complex genetics of gait speed:Genome-wide meta-analysis approach

    Get PDF
    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging

    Previous fracture and subsequent fracture risk : a meta-analysis to update FRAX

    Get PDF
    A large international meta-analysis using primary data from 64 cohorts has quantified the increased risk of fracture associated with a previous history of fracture for future use in FRAX. The aim of this study was to quantify the fracture risk associated with a prior fracture on an international basis and to explore the relationship of this risk with age, sex, time since baseline and bone mineral density (BMD). We studied 665,971 men and 1,438,535 women from 64 cohorts in 32 countries followed for a total of 19.5 million person-years. The effect of a prior history of fracture on the risk of any clinical fracture, any osteoporotic fracture, major osteoporotic fracture, and hip fracture alone was examined using an extended Poisson model in each cohort. Covariates examined were age, sex, BMD, and duration of follow-up. The results of the different studies were merged by using the weighted β-coefficients. A previous fracture history, compared with individuals without a prior fracture, was associated with a significantly increased risk of any clinical fracture (hazard ratio, HR = 1.88; 95% CI = 1.72-2.07). The risk ratio was similar for the outcome of osteoporotic fracture (HR = 1.87; 95% CI = 1.69-2.07), major osteoporotic fracture (HR = 1.83; 95% CI = 1.63-2.06), or for hip fracture (HR = 1.82; 95% CI = 1.62-2.06). There was no significant difference in risk ratio between men and women. Subsequent fracture risk was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any clinical fracture (14%), osteoporotic fracture (17%), and for hip fracture (33%). The risk ratio for all fracture outcomes related to prior fracture decreased significantly with adjustment for age and time since baseline examination. A previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by BMD. The effect is similar in men and women. Its quantitation on an international basis permits the more accurate use of this risk factor in case finding strategies

    Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

    Get PDF
    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Throug

    A meta-analysis of previous falls and subsequent fracture risk in cohort studies

    Get PDF
    NC Harvey acknowledges funding from the UK Medical Research Council (MC_PC_21003; MC_PC_21001). The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, and 75N92021D00005. Funding for the MrOS USA study comes from the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. Funding for the SOF study comes from the National Institute on Aging (NIA), and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), supported by grants (AG05407, AR35582, AG05394, AR35584, and AR35583). Funding for the Health ABC study was from the Intramural research program at the National Institute on Aging under the following contract numbers: NO1-AG-6–2101, NO1-AG-6–2103, and NO1-AG-6–2106.Peer reviewedPostprin
    corecore