1,125 research outputs found
bRing: An observatory dedicated to monitoring the Pictoris b Hill sphere transit
Aims. We describe the design and first light observations from the
Pictoris b Ring ("bRing") project. The primary goal is to detect photometric
variability from the young star Pictoris due to circumplanetary
material surrounding the directly imaged young extrasolar gas giant planet
\bpb. Methods. Over a nine month period centred on September 2017, the Hill
sphere of the planet will cross in front of the star, providing a unique
opportunity to directly probe the circumplanetary environment of a directly
imaged planet through photometric and spectroscopic variations. We have built
and installed the first of two bRing monitoring stations (one in South Africa
and the other in Australia) that will measure the flux of Pictoris,
with a photometric precision of over 5 minutes. Each station uses two
wide field cameras to cover the declination of the star at all elevations.
Detection of photometric fluctuations will trigger spectroscopic observations
with large aperture telescopes in order to determine the gas and dust
composition in a system at the end of the planet-forming era. Results. The
first three months of operation demonstrate that bRing can obtain better than
0.5\% photometry on Pictoris in five minutes and is sensitive to
nightly trends enabling the detection of any transiting material within the
Hill sphere of the exoplanet
Data calibration for the MASCARA and bRing instruments
Aims: MASCARA and bRing are photometric surveys designed to detect
variability caused by exoplanets in stars with . Such variability
signals are typically small and require an accurate calibration algorithm,
tailored to the survey, in order to be detected. This paper presents the
methods developed to calibrate the raw photometry of the MASCARA and bRing
stations and characterizes the performance of the methods and instruments.
Methods: For the primary calibration a modified version of the coarse
decorrelation algorithm is used, which corrects for the extinction due to the
earth's atmosphere, the camera transmission, and intrapixel variations.
Residual trends are removed from the light curves of individual stars using
empirical secondary calibration methods. In order to optimize these methods, as
well as characterize the performance of the instruments, transit signals were
injected in the data. Results: After optimal calibration an RMS scatter of 10
mmag at is achieved in the light curves. By injecting transit
signals with periods between one and five days in the MASCARA data obtained by
the La Palma station over the course of one year, we demonstrate that MASCARA
La Palma is able to recover 84.0, 60.5 and 20.7% of signals with depths of 2, 1
and 0.5% respectively, with a strong dependency on the observed declination,
recovering 65.4% of all transit signals at versus 35.8% at
. Using the full three years of data obtained by MASCARA La
Palma to date, similar recovery rates are extended to periods up to ten days.
We derive a preliminary occurrence rate for hot Jupiters around A-stars of , knowing that many hot Jupiters are still overlooked. In the era of
TESS, MASCARA and bRing will provide an interesting synergy for finding
long-period ( days) transiting gas-giant planets around the brightest
stars.Comment: 18 pages, 17 figures, accepted for publication in A&
Results from the Mars Phoenix Lander Robotic Arm experiment
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95618/1/jgre2693.pd
MutLα heterodimers modify the molecular phenotype of Friedreich ataxia
This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings: To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance: Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. © 2014 Ezzatizadeh et al.This article has been made available through the Brunel Open Access Publishing Fund
Magnetic Flux Transport by turbulent reconnection in astrophysical flows
The role of MHD turbulence in astrophysical environments is still highly
debated. An important question that permeates this debate is the transport of
magnetic flux. This is particularly important, for instance, in the context of
star formation. When clouds collapse gravitationally to form stars, there must
be some magnetic flux transport. otherwise the new born stars would have
magnetic fields several orders of magnitude larger than the observed ones.
Also, the magnetic flux that is dragged in the late stages of the formation of
a star can remove all the rotational support from the accretion disk that grows
around the protostar. The efficiency of the mechanism which is often invoked to
allow the transport of magnetic fields in the different stages of star
formation, namely, the ambipolar diffusion, has been lately put in check. We
here discuss an alternative mechanism for magnetic flux transport which is
based on turbulent fast magnetic reconnection. We review recent results
obtained from 3D MHD numerical simulations that indicate that this mechanism is
very efficient for decoupling and transport magnetic flux from the inner denser
regions to the outskirts of collapsing clouds in the different stages of star
formation. We also discuss this mechanism in the context of dynamo processes
and speculate that it can play a role both in the solar dynamo and in accretion
disk dynamo processes.Comment: 10 pages, 2 figures, review submitted to Physica Script
Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell
<p>Abstract</p> <p>Background</p> <p>During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of <it>Coenobita clypeatus </it>(Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase.</p> <p>Results</p> <p>The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that <it>C. clypeatus </it>has visual and mechanosensory skills that are comparable to those of marine Crustacea.</p> <p>Conclusion</p> <p>In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of <it>C. clypeatus</it>. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.</p
Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system
- …