1,025 research outputs found

    Low and High Ionization Absorption Properties of Mg II Absorption-Selected Galaxies at Intermediate Redshifts. I. General Properties

    Get PDF
    We present extensive metal-line absorption properties for 45 absorption systems that were selected by their Mg II absorption at redshifts between 0.4 and 1.4. For each system the properties of several chemical species are determined, including a wide range of ionization conditions. In the optical, the absorption systems have been observed at ~6 km/s resolution with HIRES/Keck, which covered Mg II, several Fe II transitions, Mg I, and in some cases (depending upon redshift), Ca II, Ti II, Mn II, and Al III. Ultraviolet, lower resolution (~230 km/s) Faint Object Spectrograph data (1600 - 3275 Ang) were obtained from the Hubble Space Telescope archive. These spectra covered Al II, Al III, Si II, Si III, Si IV, C II, C III, C IV, N V, O VI, and several Lyman series transitions, with coverage dependent upon the absorption system redshift. From these data, we infer that Mg II absorbing galaxies at intermediate redshifts have multiphase gaseous structures.Comment: Accepted: The Astrophysical Journa

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∌1 m and ∌1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≄500 ÎŒm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 ÎŒm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Low and High Ionization Absorption Properties of Mg II Absorption-Selected Galaxies at Intermediate Redshifts. II. Taxonomy, Kinematics, and Galaxies

    Full text link
    [Abridged] We examine a sample of 45 Mg II absorption-selected systems over the redshift range 0.4 to 1.4. Mg II and Fe II absorption profiles were observed at a resolution of ~6 km/s with HIRES/Keck. Lyman-alpha and C IV data were measured in archival FOS/HST spectra (~230 km/s). We perform a multivariate analysis of W(MgII), W(FeII), W(CIV) and W(Lya) (rest-frame) equivalent widths and the Mg II kinematic spread. We find five categories of Mg II absorbers: "Classic", "C IV-deficient", "Single/Weak", "Double", and "DLA/HI-Rich". There is a strong connection between low-ionization kinematics and the location of an absorber on the W(CIV)-W(MgII) plane. In most absorbers a significant fraction of the C IV arises in a phase separate from Mg II. Many of the C IV profiles are resolved in the FOS spectra due to velocity structure.. For 16 galaxies, we compare the available absorption-line properties (taken from Churchill et al. 2000, Paper I) to the galaxy properties but find no significant (greater than 3-sigma) correlations, although several suggestive trends are apparent. We compare the locations of our intermediate redshift absorbers on the W(CIV)-W(MgII) plane with those of lower and higher redshift data taken from the literature and find evidence for evolution that is connected with the Mg II kinematics. We discuss the potential of using the above categorizations of absorbers to understand the evolution in the underlying physical processes giving rise to the gas and governing its ionization phases and kinematics.Comment: Accepted: The Astrophysical Journal; Work based upon data presented in Paper I [astro-ph/0005585
    • 

    corecore