48 research outputs found

    Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Farnesol is a sesquiterpene alcohol produced by many organisms, and also found in several essential oils. Its role as a quorum sensing molecule and as a virulence factor of <it>Candida albicans </it>has been well described. Studies revealed that farnesol affect the growth of a number of bacteria and fungi, pointing to a potential role as an antimicrobial agent.</p> <p>Methods</p> <p>Growth assays of <it>Paracoccidioides brasiliensis </it>cells incubated in the presence of different concentrations of farnesol were performed by measuring the optical density of the cultures. The viability of fungal cells was determined by MTT assay and by counting the colony forming units, after each farnesol treatment. The effects of farnesol on <it>P. brasiliensis </it>dimorphism were also evaluated by optical microscopy. The ultrastructural morphology of farnesol-treated <it>P. brasiliensis </it>yeast cells was evaluated by transmission and scanning electron microscopy.</p> <p>Results</p> <p>In this study, the effects of farnesol on <it>Paracoccidioides brasiliensis </it>growth and dimorphism were described. Concentrations of this isoprenoid ranging from 25 to 300 ÎĽM strongly inhibited <it>P. brasiliensis </it>growth. We have estimated that the MIC of farnesol for <it>P. brasiliensis </it>is 25 ÎĽM, while the MLC is around 30 ÎĽM. When employing levels which don't compromise cell viability (5 to 15 ÎĽM), it was shown that farnesol also affected the morphogenesis of this fungus. We observed about 60% of inhibition in hyphal development following <it>P. brasiliensis </it>yeast cells treatment with 15 ÎĽM of farnesol for 48 h. At these farnesol concentrations we also observed a significant hyphal shortening. Electron microscopy experiments showed that, despite of a remaining intact cell wall, <it>P. brasiliensis </it>cells treated with farnesol concentrations above 25 ÎĽM exhibited a fully cytoplasmic degeneration.</p> <p>Conclusion</p> <p>Our data indicate that farnesol acts as a potent antimicrobial agent against <it>P. brasiliensis</it>. The fungicide activity of farnesol against this pathogen is probably associated to cytoplasmic degeneration. In concentrations that do not affect fungal viability, farnesol retards the germ-tube formation of <it>P. brasiliensis</it>, suggesting that the morphogenesis of this fungal is controlled by environmental conditions.</p

    In Vivo Study of the Sorbicillinoid Gene Cluster in Trichoderma reesei

    Get PDF
    Sorbicillinoids are a diverse group of yellow secondary metabolites that are produced by a range of not closely related ascomycetes, including Penicillium chrysogenum, Acremonium chrysogenum, and Trichoderma reesei. They share a similarity to the name-giving compound sorbicillin, a hexaketide. Previously, a conserved gene cluster containing two polyketide synthases has been identified as the source of sorbicillin, and a model for the biosynthesis of sorbicillin in P. chrysogenum has been proposed. In this study, we deleted the major genes of interest of the cluster in T. reesei, namely sor1, sor3, and sor4. Sor1 is the homolog of P. chrysogenum SorA, which is the first polyketide synthase of the proposed biosynthesis pathway. Sor3 is a flavin adenine dinucleotide (FAD)-dependent monooxygenase, and its homolog in P. chrysogenum, SorC, was shown to oxidize sorbicillin and 2′,3′-dihydrosorbicillin to sorbicillinol and 2′,3′-dihydrosorbicillinol, respectively, in vitro. Sor4 is an FAD/flavin mononucleotide-containing dehydrogenase with an unknown function. We measured the amounts of synthesized sorbicillinoids throughout growth and could verify the roles of Sor1 and Sor3 in vivo in T. reesei. In the absence of Sor4, two compounds annotated to dihydrosorbicillinol accumulate in the supernatant and only small amounts of sorbicillinol are synthesized. Therefore, we suggest extending the current biosynthesis model about Sor4 reducing 2′,3′-dihydrosorbicillin and 2′,3′-dihydrosorbicillinol to sorbicillinol and sorbicillinol, respectively. Sorbicillinol turned out to be the main chemical building block for most sorbicillinoids, including oxosorbicillinol, bisorbicillinol, and bisvertinolon. Further, we detected the sorbicillinol-dependent synthesis of 5-hydroxyvertinolide at early time points, which contradicts previous models for biosynthesis of 5-hydroxyvertinolide. Finally, we investigated whether sorbicillinoids from T. reesei have a growth limiting effect on the fungus itself or on plant pathogenic fungi or on pathogenic bacteria

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    In Vitro Characterization of a Nuclear Receptor-like Domain of the Xylanase Regulator 1 from <i>Trichoderma reesei</i>

    No full text
    Engineering transcription factors is an interesting research target gaining increasing attention, such as in the case of industrially used organisms. With respect to sustainability, biomass-degrading saprophytic fungi, such as Trichoderma reesei, are promising industrial work horses because they exhibit a high secretory capacity of native and heterologously expressed enzymes and compounds. A single-point mutation in the main transactivator of xylanase and cellulase expressions in T. reesei Xyr1 led to a strongly deregulated and enhanced xylanase expression. Circular dichroism spectroscopy revealed a change in secondary structure caused by this mutation. According to electrophoretic mobility shift assays and determination of the equilibrium-binding constants, the DNA-binding affinity of the mutated Xyr1 was considerably reduced compared to the wild-type Xyr1. Both techniques were also used to investigate the allosteric response to carbohydrates (D-glucose-6-phosphate, D-xylose, and sophorose) signalling the repression or induction of Xyr1 target genes. The mutated Xyr1 no longer exhibited a conformational change in response to these carbohydrates, indicating that the observed deregulation is not a simple matter of a change in DNA-binding of the transactivator. Altogether, we postulate that the part of Xyr1 where the mutation is located functions as a nuclear receptor-like domain that mediates carbohydrate signals and modulates the Xyr1 transactivating activity
    corecore