770 research outputs found

    The Role of MET Inhibitor Therapies in the Treatment of Advanced Non-Small Cell Lung Cancer

    Get PDF
    Introduction: Non-small cell lung cancer (NSCLC) is the second most common cancer globally. The mesenchymal-epithelial transition (MET) proto-oncogene can be targeted in NSCLC patients.Methods: We performed a literature search on PubMed in December 2019 for studies on MET inhibitors and NSCLC. Phase II and III clinical trials published in English between 2014 and 2019 were selected.Results: Data on MET inhibitors (tivantinib, cabozantinib, and crizotinib) and anti-MET antibodies (emibetuzumab and onartuzumab) are reported in the text.Conclusion: Emibetuzumab could be used for NSCLC cases with highMETexpression. Further, studies on onartuzumab failed to prove its efficacy, while the results of tivantinib trials were clinically but not statistically significant. Additionally, cabozantinib was effective, but adverse reactions were common, and crizotinib was generally well-tolerated

    Nuclear phenotype changes after heat shock in Panstrongylus megistus (Burmeister)

    Get PDF
    The nuclear phenotypes of Malpighian tubule epithelial cells of male nymphs of the blood-sucking insect, Panstrongylus megistus, subjected to short- and long-duration heat shocks at 40ºC were analyzed immediately after the shock and 10 and 30 days later. Normal nuclei with a usual heterochromatic body as well as phenotypes indicative of survival (unravelled heterochromatin, giants) and death (apoptosis, necrosis) responses were observed in control and treated specimens. However, all nuclear phenotypes, except the normal ones, were more frequent in shocked specimens. Similarly altered phenotypes have also been reported in Triatoma infestans following heat shock, although at different frequencies. The frequency of the various nuclear phenotypes observed in this study suggests that the forms of cell survival observed were not sufficient or efficient enough to protect all of the Malpighian tubule cells from the deleterious effects of stress. In agreement with studies on P. megistus survival following heat shock, only long-duration shock produced strongly deleterious effects.27127

    Developing combinatorial multi-component therapies (CMCT) of drugs that are more specific and have fewer side effects than traditional one drug therapies

    Get PDF
    Drugs designed for a specific target are always found to have multiple effects. Rather than hope that one bullet can be designed to hit only one target, nonlinear interactions across genomic and proteomic networks could be used to design Combinatorial Multi-Component Therapies (CMCT) that are more targeted with fewer side effects. We show here how computational approaches can be used to predict which combinations of drugs would produce the best effects. Using a nonlinear model of how the output effect depends on multiple input drugs, we show that an artificial neural network can accurately predict the effect of all 215 = 32,768 combinations of drug inputs using only the limited data of the output effect of the drugs presented one-at-a-time and pairs-at-a-time

    A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying

    Get PDF
    In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments
    corecore