354 research outputs found

    Design investigation of cylindrical structures other than honeycomb Final report, 1 Jun. - 30 Nov. 1965

    Get PDF
    Lightweight, double walled cylindrical structure design investigatio

    Iterated Binomial Sums and their Associated Iterated Integrals

    Full text link
    We consider finite iterated generalized harmonic sums weighted by the binomial (2kk)\binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for NN \rightarrow \infty and the iterated integrals at x=1x=1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit NN \rightarrow \infty of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to NCN \in \mathbb{C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as e.g. for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil

    Species distribution models of tropical deep-sea snappers

    Get PDF
    Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT) within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone) predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna). Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and conservation planning, and for predicting future distributions of deep-sea snappers.Céline Gomez, Ashley J. Williams, Simon J. Nicol, Camille Mellin, Kim L. Loeun, Corey J. A. Bradsha

    Multi-scale marine biodiversity patterns inferred efficiently from habitat image processing

    Get PDF
    Cost-effective proxies of biodiversity and species abundance, applicable across a range of spatial scales, are needed for setting conservation priorities and planning action. We outline a rapid, efficient, and low-cost measure of spectral signal from digital habitat images that, being an effective proxy for habitat complexity, correlates with species diversity and requires little image processing or interpretation. We validated this method for coral reefs of the Great Barrier Reef (GBR), Australia, across a range of spatial scales (1 m to 10 km), using digital photographs of benthic communities at the transect scale and high-resolution Landsat satellite images at the reef scale. We calculated an index of image-derived spatial heterogeneity, the mean information gain (MIG), for each scale and related it to univariate (species richness and total abundance summed across species) and multivariate (species abundance matrix) measures of fish community structure, using two techniques that account for the hierarchical structure of the data: hierarchical (mixed-effect) linear models and distance-based partial redundancy analysis. Over the length and breadth of the GBR, MIG alone explained up to 29% of deviance in fish species richness, 33% in total fish abundance, and 25% in fish community structure at multiple scales, thus demonstrating the possibility of easily and rapidly exploiting spatial information contained in digital images to complement existing methods for inferring diversity and abundance patterns among fish communities. Thus, the spectral signal of unprocessed remotely sensed images provides an efficient and low-cost way to optimize the design of surveys used in conservation planning. In data-sparse situations, this simple approach also offers a viable method for rapid assessment of potential local biodiversity, particularly where there is little local capacity in terms of skills or resources for mounting in-depth biodiversity surveys.Camille Mellin, Lael Parrott, Serge Andréfouët, Corey J. A. Bradshaw, M. Aaron MacNeil, and M. Julian Cale

    A Comprehensive View of the 2006 December 13 CME: From the Sun to Interplanetary Space

    Full text link
    The biggest halo coronal mass ejection (CME) since the Halloween storm in 2003, which occurred on 2006 December 13, is studied in terms of its solar source and heliospheric consequences. The CME is accompanied by an X3.4 flare, EUV dimmings and coronal waves. It generated significant space weather effects such as an interplanetary shock, radio bursts, major solar energetic particle (SEP) events, and a magnetic cloud (MC) detected by a fleet of spacecraft including STEREO, ACE, Wind and Ulysses. Reconstruction of the MC with the Grad-Shafranov (GS) method yields an axis orientation oblique to the flare ribbons. Observations of the SEP intensities and anisotropies show that the particles can be trapped, deflected and reaccelerated by the large-scale transient structures. The CME-driven shock is observed at both the Earth and Ulysses when they are separated by 74^{\circ} in latitude and 117^{\circ} in longitude, the largest shock extent ever detected. The ejecta seems missed at Ulysses. The shock arrival time at Ulysses is well predicted by an MHD model which can propagate the 1 AU data outward. The CME/shock is tracked remarkably well from the Sun all the way to Ulysses by coronagraph images, type II frequency drift, in situ measurements and the MHD model. These results reveal a technique which combines MHD propagation of the solar wind and type II emissions to predict the shock arrival time at the Earth, a significant advance for space weather forecasting especially when in situ data are available from the Solar Orbiter and Sentinels.Comment: 26 pages, 10 figures. 2008, ApJ, in pres

    On convergent series representations of Mellin-Barnes integrals

    Full text link
    Multiple Mellin-Barnes integrals are often used for perturbative calculations in particle physics. In this context, the evaluation of such objects may be performed through residues calculations which lead to their expression as multiple series in powers and logarithms of the parameters involved in the problem under consideration. However, in most of the cases, several series representations exist for a given integral. They converge in different regions of values of the parameters, and it is not obvious to obtain them. For twofold integrals we present a method which allows to derive straightforwardly and systematically: (a) different sets of poles which correspond to different convergent double series representations of a given integral, (b) the regions of convergence of all these series (without an a priori full knowledge of their general term), and (c) the general term of each series (this may be performed, if necessary, once the relevant domain of convergence has been found). This systematic procedure is illustrated with some integrals which appear, among others, in the calculation of the two-loop hexagon Wilson loop in N = 4 SYM theory. Mellin-Barnes integrals of higher dimension are also considered.Comment: 49 pages, 16 figure

    Thirty years of research on Crown-of-Thorns Starfish (1986–2016): Scientific advances and emerging opportunities

    Get PDF
    Research on the coral-eating crown-of-thorns starfish (CoTS) has waxed and waned over the last few decades, mostly in response to population outbreaks at specific locations. This review considers advances in our understanding of the biology and ecology of CoTS based on the resurgence of research interest, which culminated in this current special issue on the Biology, Ecology and Management of Crown-of-Thorns Starfish. More specifically, this review considers progress in addressing 41 specific research questions posed in a seminal review by P. Moran 30 years ago, as well as exploring new directions for CoTS research. Despite the plethora of research on CoTS ( > 1200 research articles), there are persistent knowledge gaps that constrain effective management of outbreaks. Although directly addressing some of these questions will be extremely difficult, there have been considerable advances in understanding the biology of CoTS, if not the proximate and ultimate cause(s) of outbreaks. Moving forward, researchers need to embrace new technologies and opportunities to advance our understanding of CoTS biology and behavior, focusing on key questions that will improve effectiveness of management in reducing the frequency and likelihood of outbreaks, if not preventing them altogether

    Protocol for: Sheffield Obesity Trial (SHOT): A randomised controlled trial of exercise therapy and mental health outcomes in obese adolescents [ISRCNT83888112]

    Get PDF
    Background While obesity is known to have many physiological consequences, the psychopathology of this condition has not featured prominently in the literature. Cross-sectional studies have indicated that obese children have increased odds of experiencing poor quality of life and mental health. However, very limited trial evidence has examined the efficacy of exercise therapy for enhancing mental health outcomes in obese children, and the Sheffield Obesity Trial (SHOT) will provide evidence of the efficacy of supervised exercise therapy in obese young people aged 11–16 years versus usual care and an attention-control intervention. Method/design SHOT is a randomised controlled trial where obese young people are randomised to receive; (1) exercise therapy, (2) attention-control intervention (involving body-conditioning exercises and games that do not involve aerobic activity), or (3) usual care. The exercise therapy and attention-control sessions will take place three times per week for eight weeks and a six-week home programme will follow this. Ninety adolescents aged between 11–16 years referred from a children's hospital for evaluation of obesity or via community advertisements will need to complete the study. Participants will be recruited according to the following criteria: (1) clinically obese and aged 11–16 years (Body Mass Index Centile > 98th UK standard) (2) no medical condition that would restrict ability to be active three times per week for eight weeks and (3) not diagnosed with insulin dependent diabetes or receiving oral steroids. Assessments of outcomes will take place at baseline, as well as four (intervention midpoint) and eight weeks (end of intervention) from baseline. Participants will be reassessed on outcome measures five and seven months from baseline. The primary endpoint is physical self-perceptions. Secondary outcomes include physical activity, self-perceptions, depression, affect, aerobic fitness and BMI

    Observations of a ^3He-rich SEP Event over a Broad Range of Heliographic Longitudes: Results from STEREO and ACE

    Get PDF
    Observations of energetic ions and electrons from STEREO and ACE have been used to investigate the longitudinal extent of particle emissions from 3He ‐rich solar energetic particle (SEP) events. In the event of 3–4 Nov 2008, ions and electrons were detected 20° ahead and behind the nominal connection from the source region to 1 AU, and electrons were also detected 60° ahead. The results are consistent with those of earlier studies that correlated data from near‐Earth spacecraft with Helios data or with observations of source regions on the Sun
    corecore