432 research outputs found

    The Chandra X-Ray Observatory's Radiation Environment and the AP-8/AE-8 Model

    Full text link
    The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km x 10,000 km, and has a period of approximately 63.5 hours (~ 2.65 days). It transits the Earth's Van Allen belts once per orbit during which no science observations can be performed due to the high radiation environment. The Chandra X-ray Observatory Center (CXC) currently uses the National Space Science Data Center's ``near Earth'' AP-8/AE-8 radiation belt model to predict the start and end times of passage through the radiation belts. However, our scheduling software uses only a simple dipole model of the Earth's magnetic field. The resulting B, L magnetic coordinates, do not always give sufficiently accurate predictions of the start and end times of transit of the Van Allen belts. We show this by comparing to the data from Chandra's on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument particle detector) instrument. We present evidence that demonstrates this mis-timing of the outer electron radiation belt as well as data that also demonstrate the significant variablity of one radiation belt transit to the next as experienced by the CXO. We also present an explanation for why the dipole implementation of the AP-8/AE-8 model is not ideally suited for the CXO. Lastly, we provide a brief discussion of our on-going efforts to identify a model that accounts for radiation belt variability, geometry, and one that can be used for observation scheduling purposes.Comment: 12 pgs, 6 figs, for SPIE 4012 (Paper 76

    Latitudinal gradients of galactic cosmic rays during the 2007 solar minimum

    Get PDF
    Ulysses, launched in 1990 October in the maximum phase of solar cycle 22, completed its third out-of-ecliptic orbit in 2008 February. This provides a unique opportunity to study the propagation of cosmic rays over a wide range of heliographic latitudes during different levels of solar activity and different polarities in the inner heliosphere. Comparison of the first and second fast latitude scans from 1994 to 1995 and from 2000 to 2001 confirmed the expectation of positive latitudinal gradients at solar minimum versus an isotropic Galactic cosmic ray distribution at solar maximum. During the second scan in mid-2000, the solar magnetic field reversed its global polarity. From 2007 to 2008, Ulysses made its third fast latitude scan during the declining phase of solar cycle 23. Therefore, the solar activity is comparable in 2007-2008 to that from 1994 to 1995, but the magnetic polarity is opposite. Thus, one would expect to compare positive with negative latitudinal gradients during these two periods for protons and electrons, respectively. In contrast, our analysis of data from the Kiel Electron Telescope aboard Ulysses results in no significant latitudinal gradients for protons. However, the electrons show, as expected, a positive latitudinal gradient of ~0.2% per degree. Although our result is surprising, the nearly isotropic distribution of protons in 2007-2008 is consistent with an isotropic distribution of electrons from 1994 to 1995

    Analytical results for the Coqblin-Schrieffer model with generalized magnetic fields

    Full text link
    Using the approach alternative to the traditional Thermodynamic Bethe Ansatz, we derive analytical expressions for the free energy of Coqblin-Schrieffer model with arbitrary magnetic and crystal fields. In Appendix we discuss two concrete examples including the field generated crossover from the SU(4) to the SU(2) symmetry in the SU(4)-symmetric model.Comment: 5 page

    A Comprehensive View of the 2006 December 13 CME: From the Sun to Interplanetary Space

    Full text link
    The biggest halo coronal mass ejection (CME) since the Halloween storm in 2003, which occurred on 2006 December 13, is studied in terms of its solar source and heliospheric consequences. The CME is accompanied by an X3.4 flare, EUV dimmings and coronal waves. It generated significant space weather effects such as an interplanetary shock, radio bursts, major solar energetic particle (SEP) events, and a magnetic cloud (MC) detected by a fleet of spacecraft including STEREO, ACE, Wind and Ulysses. Reconstruction of the MC with the Grad-Shafranov (GS) method yields an axis orientation oblique to the flare ribbons. Observations of the SEP intensities and anisotropies show that the particles can be trapped, deflected and reaccelerated by the large-scale transient structures. The CME-driven shock is observed at both the Earth and Ulysses when they are separated by 74^{\circ} in latitude and 117^{\circ} in longitude, the largest shock extent ever detected. The ejecta seems missed at Ulysses. The shock arrival time at Ulysses is well predicted by an MHD model which can propagate the 1 AU data outward. The CME/shock is tracked remarkably well from the Sun all the way to Ulysses by coronagraph images, type II frequency drift, in situ measurements and the MHD model. These results reveal a technique which combines MHD propagation of the solar wind and type II emissions to predict the shock arrival time at the Earth, a significant advance for space weather forecasting especially when in situ data are available from the Solar Orbiter and Sentinels.Comment: 26 pages, 10 figures. 2008, ApJ, in pres

    The Ulysses fast latitude scans: COSPIN/KET results

    Get PDF
    International audienceUlysses, launched in October 1990, began its second out-of-ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first fast latitude scan in 1994/1995, during the second fast latitude scan solar activity was close to maximum. The solar magnetic field reversed its polarity around July 2000. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using observations from the University of Chicago's instrument on board IMP8 at Earth, we find that most solar particle events are observed at both high and low latitudes, indicating either acceleration of these particles over a broad latitude range or an efficient latitudinal transport. The latter is supported by "quiet time" variations in the MeV electron background, if interpreted as Jovian electrons. No latitudinal gradient was found for >106 MeV galactic cosmic ray protons, during the solar maximum fast latitude scan. The electron to proton ratio remains constant and has practically the same value as in the previous solar maximum. Both results indicate that drift is of minor importance. It was expected that, with the reversal of the solar magnetic field and in the declining phase of the solar cycle, this ratio should increase. This was, however, not observed, probably because the transition to the new magnetic cycle was not completely terminated within the heliosphere, as indicated by the Ulysses magnetic field and solar wind measurements. We argue that the new A<0-solar magnetic modulation epoch will establish itself once both polar coronal holes have developed

    Comparative transcriptomics of pathogenic and non-pathogenic Listeria species

    Get PDF
    Comparative RNA-seq analysis of two related pathogenic and non-pathogenic bacterial strains reveals a hidden layer of divergence in the non-coding genome as well as conserved, widespread regulatory structures called ‘Excludons', which mediate regulation through long non-coding antisense RNAs

    The LION instrument on SOHO and its scientific objectives

    Get PDF

    [Pd(2‐pymo)₂]n/Al₂O₃ as MOF Single Site Catalyst for the Selective Hydrogenation of Acetylene

    Get PDF
    Despite the great potential of metal-organic frameworks (MOFs) in catalysis, industrial applications are still scarce. This is mainly due to a lack of performance when changing from idealized lab conditions towards realistic conditions of the actual application. In this work, we demonstrate the applicability and outstanding catalytic performance of an alumina-supported [Pd(2-pymo)₂]n MOF catalyst in the selective hydrogenation of acetylene to ethylene under industrial front-end conditions. It shows a competitive performance to an industrial benchmark catalyst and even exceeds it in terms of ethane selectivity due to the combination of well-defined isolated Pd active sites and synergies due to MOF-support-interactions. The high stability was proven for up to 60 h time-on-stream and supported by XPS and XRD structural analysis
    corecore