970 research outputs found

    Blinking statistics of a molecular beacon triggered by end-denaturation of DNA

    Full text link
    We use a master equation approach based on the Poland-Scheraga free energy for DNA denaturation to investigate the (un)zipping dynamics of a denaturation wedge in a stretch of DNA, that is clamped at one end. In particular, we quantify the blinking dynamics of a fluorophore-quencher pair mounted within the denaturation wedge. We also study the behavioural changes in the presence of proteins, that selectively bind to single-stranded DNA. We show that such a setup could be well-suited as an easy-to-implement nanodevice for sensing environmental conditions in small volumes.Comment: 14 pages, 5 figures, LaTeX, IOP style. Accepted to J Phys Cond Mat special issue on diffusio

    Outcome of children with resistant and relapsed Hodgkin's disease.

    Get PDF
    During the period 1974-89, 169 children with Hodgkin's disease were treated in the Paediatric Oncology Units of the Royal Marsden and St Bartholomew's Hospitals. The overall actuarial survival for the whole group was 81% at 10 years. Thirty-five of the 169 children either did not achieve a complete remission or subsequently relapsed. The estimated actuarial survival from initial relapse or failure of primary treatment was 60% at 5 years and 45% at 10 years. Over half of the patients requiring salvage therapy had declared themselves within 2 years and only 3 relapses occurred more than 3 years from diagnosis. Very few patients remain disease free long term after failure of primary and initial salvage therapy. Patients relapsing within a year of diagnosis or not achieving a complete response to primary therapy and those with disseminated relapse had a poor response to salvage therapy. A significant subgroup of patients had prolonged survival despite multiple relapses. Neither initial histology nor stage affected survival from relapse although numbers in each subgroup were small

    Driven polymer translocation through a nanopore: a manifestation of anomalous diffusion

    Get PDF
    We study the translocation dynamics of a polymer chain threaded through a nanopore by an external force. By means of diverse methods (scaling arguments, fractional calculus and Monte Carlo simulation) we show that the relevant dynamic variable, the translocated number of segments s(t)s(t), displays an {\em anomalous} diffusive behavior even in the {\em presence} of an external force. The anomalous dynamics of the translocation process is governed by the same universal exponent α=2/(2ν+2γ1)\alpha = 2/(2\nu +2 - \gamma_1), where ν\nu is the Flory exponent and γ1\gamma_1 - the surface exponent, which was established recently for the case of non-driven polymer chain threading through a nanopore. A closed analytic expression for the probability distribution function W(s,t)W(s, t), which follows from the relevant {\em fractional} Fokker - Planck equation, is derived in terms of the polymer chain length NN and the applied drag force ff. It is found that the average translocation time scales as τf1N2α1\tau \propto f^{-1}N^{\frac{2}{\alpha} -1}. Also the corresponding time dependent statistical moments, tα \propto t^{\alpha} and t2α \propto t^{2\alpha} reveal unambiguously the anomalous nature of the translocation dynamics and permit direct measurement of α\alpha in experiments. These findings are tested and found to be in perfect agreement with extensive Monte Carlo (MC) simulations.Comment: 6 pages, 4 figures, accepted to Europhys. Lett; some references were supplemented; typos were correcte

    Advance care planning for patients with advanced illnesses attending hospital outpatient clinics study: A study protocol for a randomised controlled trial

    Get PDF
    © Author(s) (or their employer(s)) 2019. Introduction It is unclear whether advance care planning (ACP) undertaken with patients living in the community can improve patient care and avoid unwanted interventions and hospital admissions. We have designed a randomised controlled trial (RCT) to examine if ACP undertaken with patients with advanced illnesses attending hospital outpatient clinics can reduce unplanned hospital admissions and improve patient and caregiver well-being. Methods and analysis Pragmatic RCT involving patients from subspecialty outpatient clinics at five clinical sites in Sydney, Australia. Participants will be ≥18 years screened as potentially having palliative care needs and at risk of dying in 6-12 months. The patients will be randomised to intervention or control group. Intervention group will undertake ACP discussions facilitated by a trained health professional. The control group will receive written information on ACP, representing the current standard of care. The primary outcome is the number of unplanned hospital admissions at the 6-month follow-up. Secondary outcomes include: (i) patient's health-related quality-of-life and quality of chronic disease care; (ii) caregiver's health-related quality-of-life and caregiver burden and (iii) other health outcomes including ambulance usage, emergency department presentations, hospital admissions, resuscitation attempts, intensive care unit admissions, deaths, documentation of patient wishes in patient records and audit of ACP discussions and documents. The staff's self-reported attitudes and knowledge of ACP will also be measured. The data will be collected using self-report questionnaires, hospital records audit, audit of ACP documentation and data linkage analysis. Semistructured interviews and focus group discussions with patients, caregivers and healthcare professionals will explore the acceptability and feasibility of the intervention. Ethics and dissemination Approved by South-East Sydney Local Health District Human Research Ethics Committee and NSW Population and Health Services Research Ethics Committee. Results will be disseminated via conference presentations, journal publications, seminars and invited talks

    Anomalous Dynamics of Translocation

    Full text link
    We study the dynamics of the passage of a polymer through a membrane pore (translocation), focusing on the scaling properties with the number of monomers NN. The natural coordinate for translocation is the number of monomers on one side of the hole at a given time. Commonly used models which assume Brownian dynamics for this variable predict a mean (unforced) passage time τ\tau that scales as N2N^2, even in the presence of an entropic barrier. However, the time it takes for a free polymer to diffuse a distance of the order of its radius by Rouse dynamics scales with an exponent larger than 2, and this should provide a lower bound to the translocation time. To resolve this discrepancy, we perform numerical simulations with Rouse dynamics for both phantom (in space dimensions d=1d=1 and 2), and self-avoiding (in d=2d=2) chains. The results indicate that for large NN, translocation times scale in the same manner as diffusion times, but with a larger prefactor that depends on the size of the hole. Such scaling implies anomalous dynamics for the translocation process. In particular, the fluctuations in the monomer number at the hole are predicted to be non-diffusive at short times, while the average pulling velocity of the polymer in the presence of a chemical potential difference is predicted to depend on NN.Comment: 9 pages, 9 figures. Submitted to Physical Review

    Directed motion emerging from two coupled random processes: Translocation of a chain through a membrane nanopore driven by binding proteins

    Full text link
    We investigate the translocation of a stiff polymer consisting of M monomers through a nanopore in a membrane, in the presence of binding particles (chaperones) that bind onto the polymer, and partially prevent backsliding of the polymer through the pore. The process is characterized by the rates: k for the polymer to make a diffusive jump through the pore, q for unbinding of a chaperone, and the rate q kappa for binding (with a binding strength kappa); except for the case of no binding kappa=0 the presence of the chaperones give rise to an effective force that drives the translocation process. Based on a (2+1) variate master equation, we study in detail the coupled dynamics of diffusive translocation and (partial) rectification by the binding proteins. In particular, we calculate the mean translocation time as a function of the various physical parameters.Comment: 22 pages, 5 figures, IOP styl

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    A novel, fast, HMM-with-Duration implementation – for application with a new, pattern recognition informed, nanopore detector

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hidden Markov Models (HMMs) provide an excellent means for structure identification and feature extraction on stochastic sequential data. An HMM-with-Duration (HMMwD) is an HMM that can also exactly model the hidden-label length (recurrence) distributions – while the regular HMM will impose a best-fit geometric distribution in its modeling/representation.</p> <p>Results</p> <p>A Novel, Fast, HMM-with-Duration (HMMwD) Implementation is presented, and experimental results are shown that demonstrate its performance on two-state synthetic data designed to model Nanopore Detector Data. The HMMwD experimental results are compared to (i) the ideal model and to (ii) the conventional HMM. Its accuracy is clearly an improvement over the standard HMM, and matches that of the ideal solution in many cases where the standard HMM does not. Computationally, the new HMMwD has all the speed advantages of the conventional (simpler) HMM implementation. In preliminary work shown here, HMM feature extraction is then used to establish the first pattern recognition-informed (PRI) sampling control of a Nanopore Detector Device (on a "live" data-stream).</p> <p>Conclusion</p> <p>The improved accuracy of the new HMMwD implementation, at the same order of computational cost as the standard HMM, is an important augmentation for applications in gene structure identification and channel current analysis, especially PRI sampling control, for example, where speed is essential. The PRI experiment was designed to inherit the high accuracy of the well characterized and distinctive blockades of the DNA hairpin molecules used as controls (or blockade "test-probes"). For this test set, the accuracy inherited is 99.9%.</p
    corecore