1,417 research outputs found

    Interpersonal Skills in Aviation: Applications and Development

    Get PDF
    The purpose of this paper is to highlight the critical role that interpersonal skills play in the aviation environment. Many volumes have been written on the matter and it is not our intention here to review every research endeavour in interpersonal skills and aviation but rather to provide an overview of some of the more important research, drawing out the implications for aviation management. The paper is organized in the following manner: We first examine what interpersonal skills are and why they are important in aviation. This is followed by an examination of the literature on interpersonal skills in selection (pilots, air traffic controllers), which in turn is followed by interpersonal skills and training, especially in Crew Resource Management (CRM). The paper concludes with practical suggestions regarding interpersonal skill development

    Deep sequencing of pre-translational mRNPs reveals hidden flux through evolutionarily conserved AS-NMD pathways [preprint]

    Get PDF
    Background The ability to generate multiple mRNA isoforms from a single gene by alternative splicing (AS) is crucial for the regulation of eukaryotic gene expression. Because different mRNA isoforms can have widely differing decay rates, however, the flux through competing AS pathways cannot be determined by traditional RNA-Seq data alone. Further, some mRNA isoforms with extremely short half-lives, such as those subject to translation-dependent nonsense-mediated decay (AS-NMD), may be completely overlooked in even the most extensive RNA-Seq analyses. Results RNA immunoprecipitation in tandem (RIPiT) of exon junction complex (EJC) components allows for the purification of post-splicing mRNA-protein particles (mRNPs) not yet subject to translation (pre-translational mRNPs) and translation-dependent mRNA decay. Here we compared EJC RIPiT-Seq to whole cell and cytoplasmic RNA-Seq data from HEK293 cells. Consistent with expectations, we found that the flux through known AS-NMD pathways is substantially higher than what is captured by RNA-Seq. We also identified thousands of previously unannotated splicing events; while many can be attributed to “splicing noise”, others are evolutionarily-conserved events that produce new AS-NMD isoforms likely involved in maintenance of protein homeostasis. Several of these occur in genes whose overexpression has been linked to poor cancer prognosis. Conclusions Deep sequencing of RNAs in post-splicing, pre-translational mRNPs provides a means to identify and quantify splicing events without the confounding influence of differential mRNA decay. For many known AS-NMD targets, the NMD-linked AS pathway dominates. EJC RIPiT-Seq also enabled identification of numerous conserved but previously unknown AS-NMD events

    Synergistic assembly of human pre-spliceosomes across introns and exons

    Get PDF
    Most human genes contain multiple introns, necessitating mechanisms to effectively define exons and ensure their proper connection by spliceosomes. Human spliceosome assembly involves both cross-intron and cross-exon interactions, but how these work together is unclear. We examined in human nuclear extracts dynamic interactions of single pre-mRNA molecules with individual fluorescently tagged spliceosomal subcomplexes to investigate how cross-intron and cross-exon processes jointly promote pre-spliceosome assembly. U1 subcomplex bound to the 5\u27 splice site of an intron acts jointly with U1 bound to the 5\u27 splice site of the next intron to dramatically increase the rate and efficiency by which U2 subcomplex is recruited to the branch site/3\u27 splice site of the upstream intron. The flanking 5\u27 splice sites have greater than additive effects implying distinct mechanisms facilitating U2 recruitment. This synergy of 5\u27 splice sites across introns and exons is likely important in promoting correct and efficient splicing of multi-intron pre-mRNAs

    Effects of vergence findings on prepresbyopic near spectacle prescriptions

    Get PDF
    Our study investigated effects of vergence findings on both prepresbyopic and presbyopic near spectacle prescriptions. It is possible that individuals with inadequate convergence abilities, maintain excessive accommodative effort for long periods of time to compensate for the convergence problem. This may result in a greater accommodative amplitude than one would expect based on age alone. If true, perhaps vision therapy programs utilizing sustained positive accommodative techniques, may delay the onset of presbyopia and the need for bifocals or reading glasses. We hypothesize that 36 - 50 year olds with convergence deficits will have larger accommodative amplitudes than an age matched control group. Five hundred forty clinic records were sampled from age 36 - 50 from the Pacific University Family Vision Facilities between October 25, 1998 and January 26, 1999. Data from completed vision examinations were collected and analyzed using the Statview Analysis Systems. A significant correlation was found between age and the add prescription, distance phoria and the add prescription, and the fused cross cylinder and the add prescription. No significant correlation was found between any of the near vergence findings (Base Out, Base In phoria, and NPC) amount of add, however, additional studies are needed to further investigate the role distance phoria plays in the amount of add given to patients

    Free circular introns with an unusual branchpoint in neuronal projections

    Get PDF
    The polarized structure of axons and dendrites in neuronal cells depends in part on RNA localization. Previous studies have looked at which polyadenylated RNAs are enriched in neuronal projections or at synapses, but less is known about the distribution of non-adenylated RNAs. By physically dissecting projections from cell bodies of primary rat hippocampal neurons and sequencing total RNA, we found an unexpected set of free circular introns with a non-canonical branchpoint enriched in neuronal projections. These introns appear to be tailless lariats that escape debranching. They lack ribosome occupancy, sequence conservation, and known localization signals, and their function, if any, is not known. Nonetheless, their enrichment in projections has important implications for our understanding of the mechanisms by which RNAs reach distal compartments of asymmetric cells

    Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    Get PDF
    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation

    An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments

    Get PDF
    Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Our approach works across a wide range of input amounts (400 pg to 200 ng), is easy to follow and produces a library in 2-3 days at relatively low reagent cost, all while giving the user complete control over every step. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved

    Not All Children with Cystic Fibrosis Have Abnormal Esophageal Neutralization during Chemical Clearance of Acid Reflux.

    Get PDF
    PurposeAcid neutralization during chemical clearance is significantly prolonged in children with cystic fibrosis, compared to symptomatic children without cystic fibrosis. The absence of available reference values impeded identification of abnormal findings within individual patients with and without cystic fibrosis. The present study aimed to test the hypothesis that significantly more children with cystic fibrosis have acid neutralization durations during chemical clearance that fall outside the physiological range.MethodsPublished reference value for acid neutralization duration during chemical clearance (determined using combined impedance/pH monitoring) was used to assess esophageal acid neutralization efficiency during chemical clearance in 16 children with cystic fibrosis (3 to <18 years) and 16 age-matched children without cystic fibrosis.ResultsDuration of acid neutralization during chemical clearance exceeded the upper end of the physiological range in 9 of 16 (56.3%) children with and in 3 of 16 (18.8%) children without cystic fibrosis (p=0.0412). The likelihood ratio for duration indicated that children with cystic fibrosis are 2.1-times more likely to have abnormal acid neutralization during chemical clearance, and children with abnormal acid neutralization during chemical clearance are 1.5-times more likely to have cystic fibrosis.ConclusionSignificantly more (but not all) children with cystic fibrosis have abnormally prolonged esophageal clearance of acid. Children with cystic fibrosis are more likely to have abnormal acid neutralization during chemical clearance. Additional studies involving larger sample sizes are needed to address the importance of genotype, esophageal motility, composition and volume of saliva, and gastric acidity on acid neutralization efficiency in cystic fibrosis children
    corecore