Effects of vergence findings on prepresbyopic near spectacle prescriptions

Tiffany J. Traphagen
Pacific University
Diana L. Moore
Pacific University
Melissa L. Gabriel
Pacific University

Recommended Citation

Traphagen, Tiffany J.; Moore, Diana L.; and Gabriel, Melissa L., "Effects of vergence findings on prepresbyopic near spectacle prescriptions" (2000). College of Optometry. 40.
https://commons.pacificu.edu/opt/40

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

Effects of vergence findings on prepresbyopic near spectacle prescriptions

Abstract

Our study investigated effects of vergence findings on both prepresbyopic and presbyopic near spectacle prescriptions. It is possible that individuals with inadequate convergence abilities, maintain excessive accommodative effort for long periods of time to compensate for the convergence problem. This may result in a greater accommodative amplitude than one would expect based on age alone. If true, perhaps vision therapy programs utilizing sustained positive accommodative techniques, may delay the onset of presbyopia and the need for bifocals or reading glasses. We hypothesize that $36-50$ year olds with convergence deficits will have larger accommodative amplitudes than an age matched control group. Five hundred forty clinic records were sampled from age 36-50 from the Pacific University Family Vision Facilities between October 25, 1998 and January 26, 1999. Data from completed vision examinations were collected and analyzed using the Statview Analysis Systems. A significant correlation was found between age and the add prescription, distance phoria and the add prescription, and the fused cross cylinder and the add prescription. No significant correlation was found between any of the near vergence findings (Base Out, Base In phoria, and NPC) amount of add, however, additional studies are needed to further investigate the role distance phoria plays in the amount of add given to patients.

\section*{Degree Type}

Thesis

\section*{Degree Name}

Master of Science in Vision Science Committee Chair Darin L. Paulson

\section*{Subject Categories}

Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

Effects of Vergence Findings on Prepresbyopic Near Spectacle Prescriptions

By

Tiffany J. Traphagen, Diana L. Moore, Melissa L. Gabriel

A thesis submitted to the faculty of the Pacific University College of Optometry

Forest Grove, Oregon
in partial fulfillment of the requirements for the degree of Doctor of Optometry

Advisor
Darin L. Paulson, O.D

Effects of Vergence Findings on Prepresbyopic Near Spectacle Prescriptions

Signature Page

Authors:

Advisor:

Darin L. Paulson, O.D.

Abstract

Our study investigated effects of vergence findings on both prepresbyopic and presbyopic near spectacle prescriptions. It is possible that individuals with inadequate convergence abilities, maintain excessive accommodative effort for long periods of time to compensate for the convergence problem. This may result in a greater accommodative amplitude than one would expect based on age alone. If true, perhaps vision therapy programs utilizing sustained positive accommodative techniques, may delay the onset of presbyopia and the need for bifocals or reading glasses.

We hypothesize that 36-50 year olds with convergence deficits will have larger accommodative amplitudes than an age matched control group. Five hundred forty clinic records were sampled from age 36-50 from the Pacific University Family Vision Facilities between October 25, 1998 and January 26, 1999. Data from completed vision examinations were collected and analyzed using the Statview Analysis Systems. A significant correlation was found between age and the add prescription, distance phoria and the add prescription, and the fused cross cylinder and the add prescription. No significant correlation was found between any of the near vergence findings (Base Out, Base In phoria, and NPC) amount of add, however, additional studies are needed to further investigate the role distance phoria plays in the amount of add given to patients.

INTRODUCTION

We have all heard the phrase "Use it or lose it"; so, can the fact that a problem with the vergence system positively affect your ability to accommodate? For example, if a person develops convergence insufficiency prior to presbyopia, can the constant state of increased accommodation, necessary to compensate for vergence, actually prolong the muscle weakening of the accommodative system in the adult?

Of particular interest is the interaction between phasic and tonic control mechanisms with the activity of cross-links between accommodation and convergence. These interactions are described by a heuristic model of accommodative-vergence interactions that was developed on the basis of several laboratory observations. ${ }^{1}$

Cross-coupling between accommodation and vergence provides a means of dynamically adjusting the tonic set points of the two motor systems to a common near or far working distance. Accommodative vergence cross-links play a dominant role in coordinating proximal changes in accommodation and convergence. The magnitude of cross-link interactions can be modified by imbalanced strength of tonic adaptation by accommodation and vergence. Reducing adaptation of tonic accommodation increases the AC / A ratio and decreases the CA / C ratio. Reducing adaptation of tonic vergence has the opposite effect. ${ }^{1}$

Rouse et al. states that convergence insufficiency consists of exophoria that is greater at near than distance, a remote near point of convergence (NPC), decreased positive fusional vergence (PFV), especially for near, and normal negative fusional vergence (NFV). ${ }^{2}$ One of the earliest descriptions of convergence insufficiency as stated by Duane included norms for both distance
and near as follows: (1) at distance: orthophoria or slight exophoria [2-4 prism diopters]; normal versions; frequently subnormal abduction [8-10 prism diopters], not more than 15 prism diopters; and prism convergence often (but not always) decreased to $14-20$ prism diopters or less; and (2) at nearpoint: marked exophoria [12 prism diopters] or greater; normal versions; and a NPC of 7.5 cm or greater. ${ }^{2}$

In independent studies, Marg showed that accommodation is under autonomic control. ${ }^{3}$ Cornsweet and Crane found that voluntary control can be attained. ${ }^{4}$ As a person can remain limber late into life by regular stretching and exercising, perhaps so too can the eye retain more of the flexibility of youth by following a certain regimen. ${ }^{5}$ If accommodative abilities can be improved in prepresbyopic adults as well, it should be possible to delay the onset of presbyopia as there will be a larger 'cushion' of surplus ability between normal function and presbyopia. ${ }^{5}$

The amount of accommodation an individual has at any age is called the amplitude of accommodation. It signified the range of focus (or range of accommodation), from infinity to near, that can be used at any time during a person's life. The amplitude of accommodation, measured separately for each eye, is used to calculate the near add. View Appendix 1 for Table of Accommodative Amplitudes. ${ }^{14}$

Presbyopia is considered to be an inevitable part of the aging process. Enoch states that the hallmark of aging of the body is the loss of flexibility. ${ }^{5}$ A widely accepted explanation for presbyopia is the loss of flexibility of the lens. But, as with the gymnast who, through continued exercise, can remain flexible late into life, perhaps with exercise the crystalline lens, too, can retain much of its flexibility. The notion that Vision Therapy may improve accommodative ability in adults, as was shown in children, is based on the idea that perhaps the
sensory motor processes of the eye, like skeletal muscle, will benefit from and be improved by regular exercise. ${ }^{6}$

Previous research which attempted to delay the onset of presbyopia concentrated on accommodative facility with techniques designed to rapidly move accommodation from distance to near and back. According to Kratka and Kratka, the usual routine for convergence insufficiency training consists of (1) proximation exercises; (2) prism base-out exercises for near and distance; (3) physiological diplopia, framing, bar reading; (4) synoptophore; (5) stereoscope (at home); and (6) ortho-fusor. ${ }^{7}$

The need for bifocal spectacles, while necessary, is considered undesirable by many patients. Some prepresbyopic patients with convergence insufficiency over accommodate to maintain fusion. In a retrospective study by Wick, subjective complaints were eliminated in 97% of the 161 convergence insufficient presbyopic patients between the ages of 45 and 89 years who were treated using vision therapy procedures. As well, 92% of the patients improved their performance on standard stereopsis and convergence tests. ${ }^{8}$

It is possible that individuals with convergence insufficiency, who are required to maintain excessive accommodative effort for long periods of time, will also maintain a greater accommodative amplitude than will individuals of equal age without convergence insufficiency. If true, then vision therapy programs could be specifically designed to delay the onset of presbyopia and the need for bifocals or reading glasses. We hypothesize that $35-45$ year-old individuals with convergence deficits will have larger accommodative amplitudes than an age-matched control group.

```
Drugs That May Cause An Increase in Accommodation
Cholinergic Agonists
Anti-Hypertensive Agents
Agents to treat Deficient Anemias
Morphine
Opium
Stimulants of the Gastrointestinal and Urinary Tracts
Drugs That May Cause a Loss of Accommodation
Adjuncts to Anesthesia
Adrenalcorticosteroids
Agents to Treat Migrane
Amebicide Agents
Anorexiant agents
Antianxiety agents
Antibiotics
Cholingeric Agents
Anticoagulants
Anticonvulsants
Antidepressants
Antihistimines
Antihypertensives
Antimalarial agents
Antineoplastic agents
Antiparkinsons agents
Antispychotic agents
Antiarrythymic agents
Antirheumatic agents
Antispasmodic agents
Anthelminitic agents
Antithyroid agents
```

Table 1
** For a detailed listing of specific agents, see list at end of thesis paper.

RESULTS

Analysis of the spreadsheet was done with the Statview Analysis Systems. The data for all tests can be found at the end of the paper. These consist of a raw data table, a drug appendix, and graphs related to selected comparisons.

The following exam findings were compared to the amount of add prescribed. Chi-squared tests were run to establish whether there was a significant correlation between the following findings of the add prescribed. (See Table 2)

- Age
- NPC Break
- NPC Recovery
- Distance Phoria
- Near Phoria
- Difference between Distance and Near Phoria
- Binocular Cross Cylinder Net

For findings with a significant correlation, two-tailed t-tests were performed (see Table 3) . Amounts of add needed for patients with esophoria compared to patient exhibiting exophoria with orthophorics included within this population was conducted within the first t-test. The second two tailed t-test compared esophoric patients to exophoric patients, excluding orthophoric patients. See Tables $4 \& 5$.

Correlation Hypothesized	Coeffici Correlati	ent	0			
	orrelation	Count	Z-Value	P-Value	95\% lower	95\% upper
Age, Add	. 579	103	6.616	<. 0001	. 435	. 695
NPC bk, Add	. 089	103	0.897	. 3695	. 1063	. 278
NPC blur, Add	. 165	103	1.669	. 0952	-. 029	. 348
Dist. Phoria, Add	d . 252	103	2.579	. 0099	. 062	. 425
Near Phoria, Add	dd . 040	103	. 397	. 6910	-. 155	. 231
Phoria Diff, Add	-. 138	103	-1.392	. 1638	-. 323	. 057
FCC Net, Add	. 292	103	3.009	. 0026	. 105	460

Table 2

Correlation Hypothesized	$\begin{aligned} & \hline \text { Cocfficient } \\ & \text { Correlation }= \end{aligned}$	0				
	Correlation	Count	Z-Value	P.Value	95\% lower	95\% upper
BO Break, Add	-0.75	103	-. 756	. 4499	-. 265	-. 120
Add, BO Rec	. 020	103	. 203	. 8388	-. 174	. 213
Add, BI Break	-. 033	103	-. 331	. 7409	-. 225	. 162
Add, BI Rec	-. 054	103	-. 538	-. 5907	-. 245	. 141

Table 3

Paired T-Tests
Hypothesized Difference

Esoadd, Exoadd

Mean Diff	DF	T-Value	P.Value
.385	51	2.742	.0084

Table 4 \& 5

Three of the seven Correlation Coefficient scores showed a P- value significance of <0.01. These were Age ($p<0.001$), Distance phoria ($p=0.0099$), and FCC net ($\mathrm{p}=0.0026$). In analyzing the paired t -test, there was noticeable increase in significance of P -value when the orthophoric patients were excluded in the analysis (p-value from 0.0042 to 0.0015).

DISCUSSION

The fact that there was no significant correlation between the power of the add and the other vergence findings (NPC break, NPC Blur, Near Phoria, Difference in Phoria) may have been due to accommodation not being held constant and/or variations in doctor instruction set.

Possible weaknesses that could have occurred within this study may include various environmental factors including different examination lanes, lighting conditions, and clarity of projected image of Snellen chart. Other variances may have occurred due to the fact that multiple interns, as well as advising doctors, performed the examinations.

In addition, patients could have variables as well including, but not limited to, dry eye, seasonal allergies, various systemic conditions, and also sociological and psychological conditions possibly affecting the final results. Diurnal variations in testing results may also have occurred over the three year span in which our queries were selected. Variations in near lenses used in near testing included the best spherical binocular visual acuity lens, fused cross cylinder lens, or the near subjective lens.

Ogle believes that proximal convergence makes up for the loss of accommodative convergence. It is also been proposed that a presbyopic individual has a nearly unrestrained use of accommodative convergence ability. The individual can therefore still innervationally try to accommodate, thus stimulating accommodative convergence, despite the absence of an accommodative response. ${ }^{9}$

Additionally, Hofstetter's study in 1942 showed that proximal convergence was effective in bringing about changes in convergence independent of changes in accommodation. ${ }^{10}$ Morgan in 1950 proposed that proximal convergence is a learned function and a part of fusional convergence. ${ }^{11}$

A 1982 study indicated that proximal convergence is of greater relative importance in determining the fusion-free position for a presbyopic subject but that accommodative convergence is the more important component in prepresbyopic subjects. ${ }^{12}$ This findings suggests that as accommodative convergence diminished with age, the proximal system makes up the difference as a learned response. Most investigators would probably agree that (1) an extra convergence system does exist, (2) this system operates independently of accommodation response, and (3) it is a learned function. ${ }^{13}$

One treatment modality for patients with convergence insufficiency is vision therapy. These patients are typically treated using the following tests: distance screen rocks, binocular lens flips, push-ups, loose lens tromboning, and eye stretching activities are just a few of the vision therapy techniques available. ${ }^{5}$ Although this was investigated in the Portland Presbyopic Onset Delay Study, we were unable to support this due to the lack of patients meeting convergence insufficiency protocol in our study.

The table found in Appendix 1 can be used as a rough estimate, but not as an absolute prescribable amount of add. Multiple diagnostic test sequences are needed to properly prescribe an adequate add for each individual, such as midpoint of positive relative accommodation and negative relative accommodation, the near subjective, and fused binocular cross cylinder.

No significance was found connecting convergence problems with amount of add, however, more extensive studies are needed to investigate the role distance phoria plays in the amount of add given to patients.

Conclusion

As the baby boomer population nears the presbyopic age, the answers to this question will become increasingly important as it will affect such a tremendous amount of the population.

Although we were unable to find data to support the hypothesis that individuals with convergence difficulties will have larger accommodative amplitudes than an age-matched control group, another area of interest found may lie in the fact that correlation was found between the distance phoria and the amount of add needed by the patient. We feel that these warrant further investigation with consistent examination protocols.

Appendix 1^{14}

Age and Diopters of Accommodation*	
4 years - 15.00D	33 years - 7.75D
5 years - 14.75D	34 years - 7.50D
6 years - 14.50D	35 years - 7.25D
7 years - 14.25D	36 years - 7.00D
8 years - 14.00D	37 years - 6.75D
9 years - 13.75D	38 years - 6.50D
10 years - 13.50D	39 years - 6.25D
11 years - 13.25D	40 years - 6.00-5.66D
12 years - 13.00D	41 years - 5.25D
13 years - 12.75D	42 years - 4.87D
14 years - 12.50D	43 years - 4.40D
15 years - 12.25D	44 years - 4.00D
16 years - 12.00D	45 years - 3.66D
17 years - 11.75D	46 years - 3.25D
18 years - 11.50D	47 years - 2.87 D
19 years - 11.25D	48 years - 2.40D
20 years - 11.00D	49 years - 2.00D
21 years - 10.75D	50 years - 1.90D
22 years - 10.50D	51 years - 1.87D
23 years - 10.25D	52 years - 1.75D
24 years - 10.00D	53 years - 1.66D
25 years - 9.75D	54 years - 1.50D
26 years - 9.50D	55 years - 1.40D
27 years - 9.25D	56 years - 1.33D
28 years - 9.00D	57 years - 1.25D
29 years - 8.75D	58 years - 1.10D
30 years - 8.50D	59 years - 1.00D
31 years - 8.25D	60 years - 1.00D
32 years - 8.00D	70 years - 0.00D
* Calculations made by Nora of the Boston Univ Ophthalmic	ypomnyaschy, COT, Graduate ty School of Medicine hnician Program

Appendix 2^{15}

Drugs that May Cause an Increase in Accommodation
Class and Generic Name Increase in Accommodation

Cholinergic agonist
Aceclidine*
Acetylcholine*
Carbachol*
Demecarium*
DFP*
Echothiophate*
Isoflurophate*
Neostigmine*
Physostigmine*
Pilocarpine*
Antihypertensive agent
Guanethidine
Agents to treat deficiency anemias
Methylene blue

Relief of pain drugs
Morphine
Opium

Accommodative Spasm

Accommodative spasm

Accommodative spasm

Accommodative spasm
Accommodative spasm

Stimulants of the gastrointestinal and urinary tracts

Carbachol*
Accommodative spasm

[^0]
Appendix 3^{15}

Drugs that May Cause a Loss of Accommodation

Class and Generic Name
Adjuncts to anesthesia
Methscopolamine
Scopolamine*
Adrenal corticosteroids
Betamethasone*
Cortisone*
Dexamethasone*
Fluorometholone*
Hydrocortisone*
Medrysone*
Prednisolone*

Loss of Accommodation

Decrease/paralysis of accommodation
Decrease/paralysis of accommodation

Agents used to treat deficiency anemias
Methylene blue Decrease in accommodation
Agents used to treat migraine
Methysergide Decrease in accommodation
Amebicide agents
Emetine Paralysis of accommodation
Anorexiant agents
Amphetamine
Benzphetamine
Chlorphentermine
Dexamphatamine
Diethylpropion
Fenfluramine
Methamphetamine
Phendimetrazine
Phenmetrazine
Phentermine
Decrease in accommodation

* These drugs are or may be principally used in ophthalmic practice.
\dagger These have been reported to be side effects, but may not be characteristic of the drug's primary action.

Appendix 3 cont.

Antianxiety agents
Carisoprodol
Chlorodiazepoxide
Clonazepam
Diazepam
Flurazepam
Lorazepam
Meprobamate
Nitrazepam
Oxazepam
Prazepam
Decrease in accommodation
Decrease in accommodation Decrease in accommodation
Decrease in accommodation
Decrease in accommodation
Decrease in accommodation
Decrease in accommodation
Decrease in accommodation
Decrease in accommodation
Decrease in accommodation
Antibiotics
Benzathine penicillin G Decrease in accommodation
Chloramphenicol
Hydrabamine penicillin V
Nalidixic acid
Potassium penicillin G
Potassium penicillin V
Potasssium phenethicillin
Procaine penicillin G
Streptomycin
Paralysis in accommodation
Decrease in accommodation

Cholineric agonists
Pilocarpine $* \dagger$
Paralysis in accommodation
Anticoagulants
Anisidione Paralysis in accommodation
Diphenadione
Phenindione
Paralysis in accommodation
Paralysis in accommodation
Anticonvulsant agents
Phenytoin
Decrease in accommodation

* These drugs are or may be principally used in ophthalmic practice.
\dagger These have been reported to be side effects, but may not be characteristic of the drug's primary action.

Appendix 3 cont.

Antidepressant agents
Anitriptyline Decrease/Paralysis of accommodation
Amoxapine
Carbamazepine
Clomipramine
Desipramine
Doxepin
Imipramine
Nortriptyline
Protriptyline
Trimipramine
Decrease/Paralysis of accommodation

Antihypertensive agents
Mecamylamine
Pargyline
Pentolinium
Tetraethylammonium
Trimethaphan
Trimethidinium
Paralysis of accommodation
Antihistamines
Antozoline*
Carbinoxamine*
Clemastine*
Diphenhydramine*
Diphenylpyraline*
Doxylamine*
Pyrilamine*
Tripelennamine
Decrease in accommodation Decrease/Paralysis of accommodation Decrease in accommodation
Decrease in accommodation
Antimalarial agents
Amodiaquine Decrease in accommodation
Chloroquine Decrease in accommodation
Hydroxychloroquine
Decrease in accommodation
Antineoplatic agents
Floxuridine Decrease in accommodation
Fluorouracil
Procarbazine
Decrease in accommodation
Decrease in accommodation

* These drugs are or may be principally used in ophthalmic practice.

Appendix 3 cont.

Antiparkinsons agents
Benztropine
Biperiden
Carampiphen
Chlorphenoxamine
Procyclidine
Cycrimine
Trihexyphenidyl

Decrease/Paralysis of accommodation
Decrease/Paralysis of accommodation
Paralysis of accommodation
Decrease/Paralysis of accommodation
Decrease/Paralysis of accommodation
Decrease/Paralysis of accommodation
Decrease/Paralysis of accommodation

Antipsychotic agents
Acetophenazine
Butaperazine
Carphenazine
Chlorpromazine
Chlorprothixene
Diethazine
Droperidol
Ethopropazine
Fluphenazine
Haloperidol
Loxapine
Mesoridazine
Methidilazine
Methotrimeprazine
Perazine
Periciazine
Perphenazine
Piperacetazine
Prochlorperazine
Promazine
Promethazine
Propiomazine
Thiopropazate
Thioproperazine
Thioridazine
Thiothixene
Trifluoperazine
Trifluperidol
Triflupromazine
Trimeprazine
Decrease/Paralysis of accommodation
Decrease in accommodation
Decrease/Paralysis of accommodation
Decrease/Paralysis of accommodation
Decrease in accommodation
Decrease in accommodation
Decrease/Paralysis of accommodation
Decrease in accommodation
Decrease/Paralysis of accommodation Decrease/Paralysis of accommodation

Appendix 3 cont.

Antiarrhythmic agents
Methachloline
Decrease in accommodation

Antirheumatic agents
Naproxen
Decrease in accommodation
Antispasmodic agents
Adiphenine
Ambutonium
Anisotropine
Atropine*
Belladonna
Clidinium
Dicyclomine
Diphemanil
Glycopyrrolate
Hexocyclium
Homatropine*
Isopropamine
Mepenzolate
Methantheline
Methixene
Methylatropine nitrate
Oxyphenonium*
Oxyphencyclimine
Pipenzolate
Piperidiolate
Poldine
Propantheline
Tridehyxethyl
Paralysis of accommodation
Paralysis of accommodation
Paralysis of accommodation
Decrease/Paralysis of accommodation
Decrease/Paralysis of accommodation
Paralysis of accommodation
Decrease/Paralysis of accommodation
Paralysis of accommodation

Anthelmintic agents
Piperazine
Paralysis of accommodation
Antithyroid agents
Iodide and iodine solution Paralysis of accommodation and compounds
Radioactive iodides
Paralysis of accommodation

* These drugs are or may be principally used in ophthalmic practice.

FEMALES							BSBVA	OD		0 O									
Patient \#	Date of Birth	Date of Exam	Age	Sex	NPC bk	NPC bl	Sph	Cyl	Axis	Sph	Cyl	Axis	DLPh	NLPh	Phdiff	FCC OD	FCC net	BOb	BObr
15758	4/21/57	9/8/98	40	F	4	6	-2.00	-0.25	90	-2.00	-0.75	50	-3	-13	-10	-1.25	0.75	18	18
25518	6/14/57	6/24/97	40	F	0	0	-1.75	-0.25	77	-2.00	0.00	0	-1	-13	12	-0.75	1.00	x	18
34856	5/10/54	10/5/98	44	F	6	6	0.25	0.00	0	0.50	0.00	0	- 1	-12.5	12	2.00	1.75	x	11
20230	6/8/55	2/6/97	41	F	2	3	0.25	-0.50	170	0.50	0.00	0	0	-11.5	11.5	1.00	0.75	8	20
15758	4/21/57	9/8/98	41	F	4	6	-2.00	-0.25	90	-2.00	-0.25	50	-3	-11	-8.5	-1.25	0.75	x	18
23422	3/6/59	2/26/97	37	F	20	30	0.00	-0.50	178	-0.50	-0.75	165	2	-11	12.5	0.75	0.75	8	24
17880	7/7/57	10/2/98	41	F	5	7	0.75	0.00	0	0.50	0.00	0	-3	-11	8	2.00	1.25	\times	18
24235	3/2/53	4/7/97	44	F	8	10	-0.25	-1.00	90	-0.25	-0.75	85	-4	-10.5	7	1.00	1.25	6	10
26100	7/30/53	7/8/97	43	F	12	15	-0.50	-0.75	130	-1.00	-0.75	150	-3	-10.5	8	-0.25	0.25	x	24
29739	11/29/56	1/3/98	42	F	2	6	0.25	-1.00	140	0.75	-1.00	10	2	-9.5	11	0.50	0.25	x	10
33427	4/5/57	8/18/98	41	F	2	3	-3.00	0.00	0	-3.75	0.00	0	-5	-9	4.5	-2.00	1.00	x	18
17660	8/23/53	4/19/96	42	F	6	14	0.75	-0.25	180	0.00	0.00	0	1	-9	10	2.25	1.50	x	12
139629	12/25/53	9/25/98	44	F	0	5	0.00	0.00	0	0.00	-0.50	20	-2	-9	-7	1.75	1.75	16	16
22520	10/18/60	1/13/97	36	F	15	20	0.25	-0.50	60	0.50	-0.50	105	0	-8	8	0.25	0.00	X	6
22164	12/13/60	3/2/98	37	F	0	3	-3.50	-0.25	93	-3.50	-1.00	135	0	-8	-8	-4.00	-0.50	8	8
6147	9/1/56	12/6/94	38	F	0	5	0.25	-1.25	180	0.00	-0.75	180	1	-8	9	2.00	1.75	10	14
35401	10/23/53	10/29/98	45	F	0	0	0.00	-0.25	166	0.00	-0.75	15	1	-8	8.5	1.50	1.50	x	20
5733	7/5/57	12/9/94	37	F	2	4	-1.25	-0.50	95	-1.50	-0.50	95	-2	-7.5	6	0.50	1.75	x	20
18386	7/9/54	2/13/97	42	F	4	5	0.00	0.00	0	0.00	0.00	0	-3	-7.5	4.5	0.25	0.25	X	12
8909	7/2/55	3/30/95	39	F	5	7	0.50	-0.75	90	0.75	-0.50	90	0	- 7	7	0.50	0.00	0	12
17701	6/25/54	4/22/96	41	F	18	25	-0.50	0.00	0	-1.00	0.00	0	2	-7	9	0.50	1.00	x	6
3906	12/13/56	4/2/97	40	F	6	5	-1.00	0.00	0	-1.00	-0.25	115	6	-6.5	12.5	0.00	1.00	x	14
12926	2/17/57	2/19/98	41	F	10	10	-0.50	-0.50	95	-0.50	-0.25	99	2	-6.5	8.5	0.25	0.75	x	26
20733	12/26/54	10/23/96	41	F	8	25	0.50	0.00	0	0.50	0.00	0	1	-6.5	7.5	1.75	1.25	14	16
6147	9/1/56	7/20/98	41	F	8	8	0.50	-0.25	28	0.25	0.00	0	0	-6	6	1.50	1.00	10	14
13915	6/2/55	4/23/96	40	F	6	7	0.25	-0.25	75	0.50	-0.50	115	0	-5.5	5.5	1.00	1.25	x	26
34528	2/24/49	10/24/98	49	F	5	5	-0.50	0.00	0	0.00	0.00	0	1	-5.5	- 6	1.00	1.50	x	10
1933	3/17/56	3/28/94	38	F	10	14	0.25	0.00	0	0.50	-0.75	180	1	-4	4.5	1.25	1.00	\times	20
17806	3/26/59	4/22/96	37	F	4	5	0.75	-0.75	165	0.75	-2.00	180	3	-3.5	6	2.00	1.25	6	18
20955	8/16/60	11/7/98	38	F	3	14	0.00	-0.25	5	0.00	-0.25	130	2	-3.5	5	1.00	1.00	x	22
25153	7/14/57	5/20/97	39	F	3	5	-1.75	-0.75	82	-2.50	0.00	0	-3	-3.5	0.5	-1.75	0.00	x	30
32631	7/28/58	6/27/98	39	F	6	7	0.25	-0.25	28	0.50	-0.25	160	-3	-3	0.5	0.75	0.50	x	24
32186	2/16/57	5/29/98	41	F	0	0	0.50	-0.50	10	0.00	-0.50	35	0	-3	3	2.00	1.50	x	30
20968	4/19/54	10/30/96	42	F	0	0	0.50	0.00	0	0.50	0.00		1	-3	4	0.50	0.00	6	22
32469	3/17/53	6/9/98	45	F	7	7	1.00	-0.75	165	1.00	-0.50	5	0	-3	3	2.25	1.25	16	18
24589	7/23/58	4/17/97	38	F	0	1	-3.00	-0.50	135	-2.25	-1.00	20	1	-2.5	3.5	-2.25	0.75	20	24
17930	9/3/55	5/15/96	40	F	0	0	1.00	-0.25	30	0.50	-0.50	170	3	-2.5	5.5	1.75	0.75	x	18
5833	9/13/55	11/11/94	39	F	3	8	0.50	-1.00	178	0.00	-0.75	3	2	-2	4	1.50	1.00	12	18
583	6/16/53	11/4/96	43	F	5	10	1.25	-0.75	70	1.00	0.00	0	3	-2	4.5	2.25	1.00	8	16
25955	8/16/58	6/28/97	38	F	0	3	-1.50	-0.75	20	-2.00	-0.75	170	0	-0.5	0.5	-0.50	1.00	8	16
17053	12/11/59	4/2/96	37	F	0	5	-0.75	-0.50	165	-0.75	-0.25	155	6	0	5.5	0.25	1.00	16	16
19189	12/25/53	7/8/92	38	F	3	6	0.00	0.00	0	0.25	0.00	0	0	0	0	0.25	0.25	6	12
21091	8/2/57	10/24/96	39	F	8	8	-3.25	-1.00	30	-3.25	-0.75	160	-1	2	3	-3.25	0.00	32	32
24623	8/29/57	4/17/97	40	F	2	4	-2.50	-1.25	5	-2.75	-0.50	45	6	2	3.5	-1.50	1.00	x	16
27350	6/3/54	9/20/97	43	F	0	0	0.25	0.00	0	0.00	0.00	0	-1	2.5	3.5	1.75	1.50	x	24
3067	12/25/55	10/29/98	42	F	15	25	-1.00	-0.50	90	0.00	-1.00	95	9	2.5	6.5	0.50	1.50	12	18
35072	2/12/48	10/9/98	50	F	3.54	10.62	1.25	0.00	0	1.75	0.00	0	1	2.5	1.5	3.25	2.00	12	16
20667	5/13/58	10/6/96	38	F	3	4	-2.25	0.00	0	-2.25	0.00	0	0	3	3	-0.50	1.75	18	22
19595	6/25/58	9/8/98	40	F	2	5	-0.75	0.00	0	-1.25	0.00	0	-3	3	6	-0.25	0.50	10	14
13529	5/10/55	11/17/98	43	F	0	5.5	-2.00	-0.50	170	-2.50	-0.75	175	5	3	2	-2.00	0.00	4	10
32494	1/12/58	6/11/98	40	F	0	0	-0.25	-0.25	105	0.25	-0.50	85	4	8.5	5	0.25	0.50	26	30
20048	9/2/56	11/10/98	42	F	3	11	-4.00	-0.75	35	-4.25	-1.25	173	14	12	2	-3.75	0.25	0	28

FEMALES						Final Rx	OD		OS			
BOrec	Blb	Blbr	Blrec	PRA	NRA	Sph	Cyl	Axis	Sph	CyI	Axis	Add
12	-24	-28	-18	-2.75	1.00	-2.00	-0.25	93	-2.00	-0.25	70	0.75
12	x	20	16	-3.25	1.25	-2.00	0.00	0	-2.00	0.00	0	1.00
6	X	16	12	1.00	3.00	0.25	0.00	0	0.50	0.00	0	1.50
6	X	18	17	-1.25	1.00	0.75	0.00	0	0.75	0.00	0	0.00
12	24	28	18	-2.75	1.00	-2.00	-0.25	93	-2.00	-0.25	70	0.75
12	10	12	6	-2.50	1.50	0.00	-0.50	178	-0.50	-0.75	165	1.00
12	X	12	12	0.00	2.50	0.75	0.00	0	0.50	0.00	0	1.25
-14	X	26	22	0.50	2.25	-0.25	-1.00	100	-0.25	-0.75	85	0.00
16	X	30	14	-1.25	1.00	-0.75	-0.25	130	-1.25	-0.25	150	1.00
-2	X	12	6	-1.00	2.50	0.25	-1.00	140	0.75	-1.00	10	0.00
4	X	22	20	-6.75	-0.50	-3.25	0.00	0	-4.00	0.00	0	0.00
2	X	8	10	1.75	2.25	2.25	0.00	0	1.50	0.00	0	0.00
24	-18	-20	-22	1.00	2.50	0.00	0.00	0	0.25	-0.50	20	1.75
0	x	18	0	-2.25	1.50	0.75	-0.50	63	0.75	-0.50	110	0.00
2	-18	-18	-14	-6.75	-0.50	-3.50	-0.25	93	-3.50	-1.00	135	0.00
-2	12	14	8	-0.25	1.75	0.75	-1.25	180	0.50	-0.75	180	0.00
0	14	20	18	0.50	2.75	1.25	-0.25	166	1.25	-0.75	15	0.00
12	X	14	6	-2.50	2.00	-1.50	0.00	0	-1.50	0.00	0	0.00
2	X	14	4	-1.75	1.75	0.00	0.00	0	0.00	0.00	0	0.00
4	4	14	12	-0.25	1.75	0.50	-0.75	90	0.75	-0.50	90	0.00
4	16	20	12	-2.25	2.00	-0.50	0.00	0	-1.00	0.00	0	0.00
14	x	14	8	-3.50	2.25	-1.00	0.00	0	-1.00	-0.25	115	0.00
24	x	12	10	-0.75	1.75	-0.50	-0.50	95	-0.50	-0.25	99	0.00
4	12	18	16	0.00	2.50	0.25	0.00	0	0.25	0.00	0	1.25
6	x	10	14	0.75	2.25	0.50	0.00	0	0.50	0.00	0	1.25
18	X	24	18	-0.50	2.25	0.00	0.00	0	0.00	0.00	0	0.00
2	X	18	4	0.50	2.00	-0.50	0.00	0	0.00	-1.00	90	2.00
10	8	18	8	1.00	2.00	0.75	0.00	0	1.00	-0.75	150	0.00
2	12	18	10	-3.25	3.00	0.50	-0.75	165	0.50	-1.75	180	0.00
8	x	14	4	-4.25	2.75	0.00	-0.25	5	0.00	-0.25	130	0.00
18	x	6	4	-4.00	0.25	-1.75	-0.75	82	-2.50	0.00	0	0.00
12	X	18	12	-0.75	2.25	1.00	0.00	0	1.00	0.00	0	0.00
6	12	18	12	-0.50	3.00	0.50	0.00	0	0.50	0.00	0	0.00
10	6	12	6	-2.75	3.00	0.25	0.00	0	0.25	0.00	0	1.00
0	16	18	12	0.50	3.75	1.00	-0.75	165	1.00	-0.50	5	1.25
18	x	12	10	-4.75	-0.75	-3.00	-0.50	135	-2.25	-1.00	20	0.00
10	x	12	6	0.50	3.50	0.75	-0.25	30	0.50	-0.50	170	1.00
14	x	6	2	-0.50	2.75	0.25	-1.00	180	0.00	-0.75	180	0.75
12	8	10	6	0.75	3.75	1.25	-0.75	70	1.00	0.00	0	1.25
8	x	16	6	-3.50	1.75	-1.25	-0.75	13	-2.00	-1.25	175	0.00
10	12	12	3	-2.00	1.75	-0.75	-0.50	165	-0.75	-0.25	155	0.00
5	4	10	6	-2.50	2.50	0.00	0.00	0	0.00	0.00	0	1.00
30	-18	-18	-18	-6.50	-0.25	-3.25	-0.75	30	-3.25	-0.75	160	0.00
4	x	12	4	-3.25	0.50	-2.50	-0.50	150	-2.75	-0.50	45	1.00
12	6	12	10	0.25	2.75	0.50	0.00	0	0.50	0.00	0	0.00
0	9	18	12	-1.00	1.75	-1.00	-0.50	90	0.00	-1.00	95	1.00
12	x	18	6	2.75	4.25	1.25	0.00	0	1.75	0.00	0	1.75
18	X	2	2	-4.25	1.00	-2.00	0.00	0	-2.00	0.00	0	0.00
10	16	18	6	-3.50	1.75	-0.75	0.00	0	-1.00	0.00	0	0.00
0	6	10	6	-2.25	-1.25	-2.50	-1.00	170	-2.75	-1.00	175	0.00
18	x	6	-2	-1.50	2.00	-0.50	0.00	0	-0.25	0.00	0	1.00
18	0	8	6	-6.00	-1.50	-4.00	-0.75	35	-4.25	-1.25	173	2.00
									Page 2		Avg Ad	0.50

		迷		a	㖪	硣	BSBVA	1	OD	BSBVA	O	os	，	Nus	，	－	边	Lor	cor	Buc	a	BSBVA
23707	11／4／57	3／12／97	39	M	6	16	0.25	0.00	0	0.75	0.00	0	－2	－17．5	15.5	1.50	1.25	x	10	－10	－18	－24
23875	517160	3／13／97	36	M	4	4	－1．00	－1．25	105	-0.50	－1．50	50	－4	－14．5	11	0.00	1.00	\times	12	6	14	20
21797	4／6／60	12／5／96	36	M	14	14	0.75	－0．75	105	0.75	－1．25	80	0	－12	12	0.50	0.25	\times	18	6	10	24
27269	1／28／54	9／15／97	43	M	2	5	－1．75	－0．75	48	－1．25	－0．75	110	－1	－12	11	－1．75	0.00	\times	5	4	7	18
20497	11／25／55	10／14／98	42	M	8	30	0.25	－0．50	75	0.25	－0．50	105	－4	－10	6	1.75	1.50	9	18	9	14	24
20650	5／19／53	10／23／96	43	M	10	12	－1．00	0.00	0	－1．00	－1．00	18	0	－10	10	1.00	2.00	\times	1	6	\times	12
16379	7／26／56	2／19／96	39	M	3	10	－1．50	0.00	0	－2．25	0.00	0	0	－9	9	0.25	1.75	\times	18	－2	\times	20
18710	11／24／55	10／24／98	42	M	7	20	－0．25	－0．50	92	－0．25	－1．00	92	1	－9	10	1.00	1.25	14	24	－ 4	8	22
21841	5／29／54	11／19／96	42	M	10	9	－0．50	－0．50	90	－0．50	－1．00	70	1	－9	10	0.75	1.25	4	6	2	12	20
24697	6／26／48	10／9／98	50	M	0	0	－0．50	0.00	0	－0．25	0.00	0	1	－9	10	1.50	2.00	14	18	6	\times	18
1309	11／19／55	9／15／94	38	M	8	6	－3．50	0.00	0	－3．75	－0．50	145	－4	－8．5	5	－2．00	1.50	\times	18	6	\times	14
26198	1／13／57	7／26／97	40	M	16	18	0.25	－0．25	40	0.00	0.00	180	－10	－8．5	1	1.25	1.00	\times	18	18	\times	10
95598	2／22／54	4／13／95	41	M	0	0	－0．50	－0．25	110	－0．50	－0．25	77	－2	－8．5	7	0.25	0.75	10	12	6	\times	18
20229	4／8／54	9／30／96	42	M	8	14	0.75	－2．00	106	0.75	－1．00	73	3	－8	10.5	1.25	0.50	26	38	30	12	24
20484	8／25／55	9／25／96	41	M	9	11	0.00	0.00	0	0.00	－0．50	180	3	－7．5	10	1.25	1.25	4	8	4	6	10
16437	1／9／54	2／21／96	42	M	2	5	－0．25	－1．00	85	－0．75	－1．00	85	1	． 7.5	8	1.00	1.25	\times	6	2	\times	4
28146	3／25／55	10／25／97	42	M	6	6	0.25	－0．25	180	0.50	0.00	0	0	－7．5	7.5	1.75	1.50	\times	18	9	\times	18
17644	5／7／56	4／19／96	39	M	5	5	－0．75	－2．00	120	－1．50	－2．50	65	5	． 7	12	－0．25	0.50	x	4	0	\times	6
16109	3／8／56	2／16／96	39	M	8	8	－4．25	－0．75	10	－4．00	－1．00	180	－3	． 7	4.5	－2．75	1.50	\times	4	2	8	14
20063	8／8／59	9／25／96	36	M	10	5	0.75	－0．50	180	0.75	0.00	0	－2	－6．5	5	2.25	1.50	\times	12	－2	18	24
20241	8／20／56	9／28／96	40	M	0	6	－2．00	－0．50	10	－2．25	－0．50	175	－1	－6．5	5.5	1.25	0.75	\times	14	10	\times	10
20301	3／27／60	11／5／97	37	M	2	7	0.25	－0．25	170	3.00	－1．25	67	1	－6	． 7	1.75	1.50	6	6	6	$\cdot 10$	－10
24364	1／31／53	11／13／98	45	M	1	5	0.50	0.00	0	0.50	－0．50	90	4	－6	9.5	2.00	1.50	\times	28	16	\times	14
23142	4／7／55	2／5／97	41	M	0	0	0.50	－0．50	119	0.25	0.00	0	－ 1	－5	4	1.50	1.00	\times	20	0	\times	22
13758	4／29／55	10／9／95	40	M	6	8	－2．00	－0．25	5	－2．00	－0．25	180	3	－4．5	7	0.00	2.00	\times	24	2	18	24
34818	4／1／49	10／3／98	49	M	1	5	0.50	0.00	0	0.50	－0．75	140	2	． 4	－5．5	3.00	2.50	20	24	10	12	18
22482	6／16／56	1／20／97	40	M	3	6	0.50	－0．50	110	0.50	－0．50	95	－3	－3	0	2.50	2.00	\times	14	8	12	18
34431	3／12／55	9／25／98	43	M	1	30	－2．75	0.00	0	－2．50	0.00	0	0	－3	－3	－1．75	1.00	12	12	－ 6	－16	－ 16
3120	12／19／54	7／21／98	44	M	5	9	－0．75	－0．75	20	-1.00	－1．00	165	2	－3	5	0.50	1.25	\times	12	－2		16
23336	11／5／55	2／15／97	42	M	3	5	2.00	－0．25	180	1.50	0.00	0	1	－ 3	3.5	3.50	1.50	\times	12	10	4	18
27132	1／6／56	9／19／97	41	M	10	14	0.50	－0．25	90	0.00	0.00	0	1	－ 3	3.5	1.25	0.75	\times	12	－2	\times	18
4373	11／4／53	2／5／98	44	M	15	10	－0．50	－0．50	105	－0．50	－1．00	80	3	－3	6	0.75	1.25	\times	15	0	\times	18
24881	8／19／59	5／17／97	37	M	0	4	－2．50	0.00	0	－2．00	0.00	0	－3	－2．5	0.5	－2．00	0.50	\times	8	2	\times	12
17571	12／10／55	4／24／96	40	M	10	15	－4．00	0.00	0	－4．25	－1．00	150	2	－2．5	4	－2．75	1.25	\times	6	8	12	14
20945	717／59	10／18／96	37	M	10	12	0.50	－0．50	80	0.75	－0．50	95	2	－2．5	4	2.25	1.75	\times	12	2	\times	16
26567	10／24／55	8／2／97	41	M	0	0	0.75	－0．25	80	0.75	－0．50	90	0	－2	2	2.00	1.25	\times	12	8	8	10
27535	11／5／55	1017／97	41	M	0	0	－1．50	－1．25	165	－1．50	－2．00	165	1	－1．5	2.5	-2.50	1.00	\times	18	12	6	14
22961	5／23／53	3／1／97	43	M	0	13	－0．50	－0．75	100	－0．75	－1．00	105	－3	－0．5	2.5	1.00	1.50	x	24	18	x	24
22790	10／28／53	8／17／98	44	M	0	0	－2．50	－1．50	95	－2．25	－1．00	95	0	0	0	－1．25	1.25	\times	20	16	x	16
15734	9／11／54	1／23／96	41	M	15	20	1.00	－0．25	180	0.25	0.00	0	0	1	1	2.25	1.25	14	18	16	\times	14
3917	7／10／57	9／15／95	38	M	6	5	1.00	－0．50	84	1.25	－0．75	90	2	1.5	0	1.75	0.75	20	24	22	\times	8
27270	6／5／55	9／15／97	42	M	5	7	－1．50	－0．75	40	－1．25	－0．50	115	11	1.5	9.5	－0．50	1.00	\times	12	6	\times	12
25919	12／6／52	6／28／97	44	M	8	10	－0．50	0.00	0	－0．75	0.00	0	1	2	0	1.00	1.50	\times	12	4	x	12
25520	1／22／56	6／10／97	41	M	0	0	－1．50	－0．25	10	－2．25	－0．75	179	0	2.5	2.5	－0．50	－1．00	\times	6	4	\times	8
29796	4／10／55	1／29／98	42	M	0	0	1.00	－0．50	50	0.75	－0．75	165	0	3	3	1.50	0.50	\times	32	24	\times	24
19909	11／28／52	9／24／96	44	M	14	19	－4．25	0.00	0	－3．50	－0．50	130	1	3	2	－4．25	0.00	\times	20	14	\times	16
28932	11／13／55	12／2／97	42	M	9	6	－3．12	0.00	0	－3．25	0.00	0	3	3.5	1	－1．75	1.37	\times	16	14	\times	10
28339	3／26／59	10／30／97	38	M	0	0	－0．25	－0．50	104	－0．50	－0．50	31	5	4	1	0.00	－0．25	16	18	10	16	18
34680	12／4／60	9／26／98	37	M	0	0	－1．25	0.00	0	-1.00	0.00	0	1	4	3	0.25	1.50	16	18	14	$\cdot 12$	$\cdot 12$
18067	7／9／55	5／8／96	40	M	0	0	－2．75	－1．25	75	-3.75	－1．00	103	4	5	1	－1．25	1.50	30	30	12	8	8
33977	10／20／57	9／8／98	40	M	3	5	－1．25	－0．75	75	－1．25	0.00	0	－2	9	11	0.25	1.50	16	30	6	\times	24
22790	10／28／53	2／21／94	40	M	－	0	－2．25	－2．00	103	－2．00	－1．25	103	2	14.5	13	－1．00	1.25		40	36	\times	10

Total Average Add	Female	Female				Male	Male		Total Average Add	
for Females and Males	Avg BO Rec	Avg. Phoria	Females	Age	Males	Avg Phoria	Avg BO Rec	Age	for Females	and Ma
0.00	0.00	-8.00	1	36	3	-11	3.33	36	0	
0.47	7.60	-6.00	5	37	4	-1.75	6.00	37	0.47	
0.10	9.28	-2.20	7	38	3	-1	12.67	38	0.1	
0.08	15.60	-2.70	5	39	4	-10.1	-2.50	39	0.08	
0.42	12.25	-3.38	8	40	8	0.5	12.50	40	0.42	
0.46	8.67	-7.90	9	41	8	-3	6.00	41	0.46	
0.77	5.00	-2.40	6	42	10	-4.6	10.20	42	0.77	
0.78	10.00	-1.75	4	43	4	-6.4	5.50	43	0.78	
1.19	5.33	-10.67	3	44	5	-0.2	6.40	44	1.19	
0.83	0.00	-5.50	2	45	1	-6	16.00	45	0.83	
2.25	2.00	-5.50	1	49	1	-4	10.00	49	2.25	
1.75	12.00	2.50	1	50	1	-9	6.00	50	1.75	
Total Females	52									
Total Males	52									
Total	104									

\# of females in each age category

Fermale Disl Phoria Vs. Add

Male Dist Phoria Vs. Add

References

1. Schor, CM. A Dynamic Model of Cross-Coupling Between Accommodation and Convergence: Simulations of Step and Frequency Responses. Opt and Vis Sci 1992; 4: 258-269.
2. Rouse et al. Frequency of Convergence Insufficiency in Optometry Clinic Settings. Opt and Vis Sci 1998; 75.2: 88-95.
3. Marg E. An Investigation of Voluntary as Distinguished From Reflex Accommodation. Am J of Opt Arch Acad of Opt 1951; 28:347-356.
4. Cornsweet TN. Crane H. Training the Visual Accommodative System. Vis Res 1973; 13:713-715.
5. Calef, T. Portland Presbyopia Onset Delay Study. Pacific Univeristy Doctor of Optometry Thesis. 1995: 1-22.
6. Cohen A. The Efficacy of Optometric Vision Therapy. J of Am Opt Assoc. 1988; 59: 95-105.
7. Kratka Z, Kratka W. Convergence Insufficiency: Its Frequency and Importance. Am Assoc of Orthoptic Technicians. 1955. April 25-26. Philadelphia.
8. Wick B. Vision Training for Presbyopic Non-Strabismic Patients. Am J of Physiol Optics 1977; 54: 4: 244-247.
9. Ogle KN, et al. Oculomotor Imbalance in Binocular Vision and Fixation Disparity. Philadelphia, Lea and Febiger, 1967: 158.
10. Hofstetter HW. The Proximal Factor in Accommodation and Convergence. Am J of Opt Arch Amer Acad of Opt 1942; 19(2): 67-76.
11. Morgan MW. A Comparison of Clinical Methods of Measuring Accommodative Convergence. Am J Optom Arch Am Acad Opt 1950; 27 (8): 385-296.
12. Nuzzi G, et al. Proximal and Accommodative Convergence and Age. Graefes Arch Clin Exp Ophthalmol 1982; 218 (2): 110-112.
13. Hanlon SD. Presbyopia and Oculomotor Balance. J Am Opt Assn May 1984; 55(5): 341-344.
14. Garber, N. Characteristics of Presbyopia and Calculating the Near Add. J of Ophth Nurs and Tech 1992; 11(5): 227-229.
15. Amos, JF. Drugs that May affect Accommodative Function. Diagnosis and Management in Vision Care 1987; 455-458.

[^0]: * These drugs may be used or are principally used in ophthalmic practice.

