1,560 research outputs found

    PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting After 3.5 Years

    Full text link
    The optical transient PTF11kx exhibited both the characteristic spectral features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting with circumstellar material (CSM) containing hydrogen, indicating the presence of a nondegenerate companion. We present an optical spectrum at 13421342 days after peak from Keck Observatory, in which the broad component of Hα\alpha emission persists with a similar profile as in early-time observations. We also present SpitzerSpitzer IRAC detections obtained 12371237 and 18181818 days after peak, and an upper limit from HSTHST ultraviolet imaging at 21332133 days. We interpret our late-time observations in context with published results - and reinterpret the early-time observations - in order to constrain the CSM's physical parameters and compare to theoretical predictions for recurrent nova systems. We find that the CSM's radial extent may be several times the distance between the star and the CSM's inner edge, and that the CSM column density may be two orders of magnitude lower than previous estimates. We show that the Hα\alpha luminosity decline is similar to other SNe with CSM interaction, and demonstrate how our infrared photometry is evidence for newly formed, collisionally heated dust. We create a model for PTF11kx's late-time CSM interaction and find that X-ray reprocessing by photoionization and recombination cannot reproduce the observed Hα\alpha luminosity, suggesting that the X-rays are thermalized and that Hα\alpha radiates from collisional excitation. Finally, we discuss the implications of our results regarding the progenitor scenario and the geometric properties of the CSM for the PTF11kx system.Comment: 15 pages, 8 figures, 3 tables; submitted to Ap

    Measurement errors in body size of sea scallops (Placopecten magellanicus) and their effect on stock assessment models

    Get PDF
    Body-size measurement errors are usually ignored in stock assessments, but may be important when body-size data (e.g., from visual sur veys) are imprecise. We used experiments and models to quantify measurement errors and their effects on assessment models for sea scallops (Placopecten magellanicus). Errors in size data obscured modes from strong year classes and increased frequency and size of the largest and smallest sizes, potentially biasing growth, mortality, and biomass estimates. Modeling techniques for errors in age data proved useful for errors in size data. In terms of a goodness of model fit to the assessment data, it was more important to accommodate variance than bias. Models that accommodated size errors fitted size data substantially better. We recommend experimental quantification of errors along with a modeling approach that accommodates measurement errors because a direct algebraic approach was not robust and because error parameters were diff icult to estimate in our assessment model. The importance of measurement errors depends on many factors and should be evaluated on a case by case basis

    Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff

    Get PDF
    Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health

    Identification of Multiple Subsets of Ventral Interneurons and Differential Distribution along the Rostrocaudal Axis of the Developing Spinal Cord

    Get PDF
    The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control

    International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people

    Get PDF
    These recommendations were systematically developed on behalf of the Network for Early Onset Cystic Kidney Disease (NEOCYST) by an international group of experts in autosomal dominant polycystic kidney disease (ADPKD) from paediatric and adult nephrology, human genetics, paediatric radiology and ethics specialties together with patient representatives. They have been endorsed by the International Pediatric Nephrology Association (IPNA) and the European Society of Paediatric Nephrology (ESPN). For asymptomatic minors at risk of ADPKD, ongoing surveillance (repeated screening for treatable disease manifestations without diagnostic testing) or immediate diagnostic screening are equally valid clinical approaches. Ultrasonography is the current radiological method of choice for screening. Sonographic detection of one or more cysts in an at-risk child is highly suggestive of ADPKD, but a negative scan cannot rule out ADPKD in childhood. Genetic testing is recommended for infants with very-early-onset symptomatic disease and for children with a negative family history and progressive disease. Children with a positive family history and either confirmed or unknown disease status should be monitored for hypertension (preferably by ambulatory blood pressure monitoring) and albuminuria. Currently, vasopressin antagonists should not be offered routinely but off-label use can be considered in selected children. No consensus was reached on the use of statins, but mTOR inhibitors and somatostatin analogues are not recommended. Children with ADPKD should be strongly encouraged to achieve the low dietary salt intake that is recommended for all children

    Associations between arterial stiffness, depressive symptoms and cerebral small vessel disease: cross-sectional findings from the AGES-Reykjavik Study.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Arterial stiffness may contribute to depression via cerebral microvascular damage, but evidence for this is scarce. We therefore investigated whether arterial stiffness is associated with depressive symptoms and whether cerebral small vessel disease contributes to this association.This cross-sectional study included a subset of participants from the AGES-Reykjavik study second examination round, which was conducted from 2007 to 2011. Arterial stiffness (carotid-femoral pulse wave velocity [CFPWV]), depressive symptoms (15-item geriatric depression scale [GDS-15]) and cerebral small vessel disease (MRI) were determined. Manifestations of cerebral small vessel disease included higher white matter hyperintensity volume, subcortical infarcts, cerebral microbleeds, Virchow-Robin spaces and lower total brain parenchyma volume.We included 2058 participants (mean age 79.6 yr; 59.0% women) in our analyses. Higher CFPWV was associated with a higher GDS-15 score, after adjustment for potential confounders (β 0.096, 95% confidence interval [CI] 0.005-0.187). Additional adjustment for white matter hyperintensity volume or subcortical infarcts attenuated the association between CFPWV and the GDS-15 score, which became nonsignificant (p > 0.05). Formal mediation tests showed that the attenuating effects of white matter hyperintensity volume and subcortical infarcts were statistically significant. Virchow-Robin spaces, cerebral microbleeds and cerebral atrophy did not explain the association between CFPWV and depressive symptoms.Our study was limited by its cross-sectional design, which precludes any conclusions about causal mediation. Depressive symptoms were assessed by a self-report questionnaire.Greater arterial stiffness is associated with more depressive symptoms; this association is partly accounted for by white matter hyperintensity volume and subcortical infarcts. This study supports the hypothesis that arterial stiffness leads to depression in part via cerebral small vessel disease.National Institutes of Health (NIH) N01-AG-12100 Intramural Research Program of the National Institute on Aging, USA Icelandic Heart Association Icelandic Parliament, Iceland National Institutes of Health, National Heart, Lung and Blood Institute HL094898 National Institute of Diabetes and Digestive and Kidney Diseases DK08244

    The alarms should no longer be ignored: survey of the demand, capacity and provision of adult community eating disorder services in England and Scotland before COVID-19.

    Get PDF
    This national pre-pandemic survey compared demand and capacity of adult community eating disorder services (ACEDS) with NHS England (NHSE) commissioning guidance. Thirteen services in England and Scotland responded (covering 10.7 million population). Between 2016-2017 and 2019-2020 mean referral rates increased by 18.8%, from 378 to 449/million population. Only 3.7% of referrals were from child and adolescent eating disorder services (CEDS-CYP), but 46% of patients were aged 18-25 and 54% were aged >25. Most ACEDS had waiting lists and rationed access. Many could not provide full medical monitoring, adapt treatment for comorbidities, offer assertive outreach or provide seamless transitions. For patient volume, the ACEDS workforce budget was 15%, compared with the NHSE workforce calculator recommendations for CEDS-CYP. Parity required £7 million investment/million population for the ACEDS. This study highlights the severe pressure in ACEDS, which has increased since the COVID-19 pandemic. Substantial investment is required to ensure NHS ACEDS meet national guidance, offer evidence-based treatment, reduce risk and preventable deaths, and achieve parity with CEDS-CYP

    Forces associated with launch into space do not impact bone fracture healing

    Get PDF
    Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10
    corecore