331 research outputs found

    Nuclear Magnetohydrodynamic EMP, Solar Storms, and Substorms

    Full text link
    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynarnic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS GIC). The MHD EMP electric field E < 10^-1 V/m and lasts < 10^2 sec, whereas for solar storms E > 10^-2 V/m and lasts >10^3 sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.Comment: 29 pages, 14 figures, 5 table

    Breaker to Control Center Integration & Automation: Protection, Control, Operation & Optimization

    Get PDF
    Recent technological advances in protection, control and optimization are enabling a more automated power system. This paper proposes the use of these technologies towards an integrated and seamless infrastructure for protection, control and operation. This infrastructure is the basis for accommodating and providing robust solutions to new problems arising from the integration of renewables, namely more uncertainty and steeper ramp rates. At the lower level we propose a dynamic state estimation of a protection zone (EBP) for the purpose of providing protection for the zone. The estimation based protection (EBP) provides the real time dynamic model of the zone as well as the real time operating conditions. Since protection is ubiquitous, it can cover the full system. We assume that GPS synchronization of the EBP is available providing accurate time tags for the real time model and operating conditions. The real time model and operating conditions can extent from the “turbine to the toaster”. We propose a methodology for automatically constructing the power system state locally and centrally at the control center with distributed controls as well as centralized controls depending on the application. For example, the centralized \ system wide real time model is used to perform system optimization functions, and then send commands back through the same communication structure to specific power system components. Since protection is ubiquitous and the modern power system has several layers of communication infrastructure, the proposed approach is realizable with very small investment. The availability of the real time dynamic model and state locally and centrally enables the seamless integration of applications. Three applications are discussed in the paper: (a) setting-less protection, (b) voltage/var control and (c) feeder load flexibility scheduling. The proposed approach and infrastructure can form the basis for the next generation of Energy Management Systems.

    Optimal Reactive Power Dispatch Formulated as Quadratic OPF and Solved via CS-SLP

    Get PDF
    Increased penetration of inverter interfaced renewable energy resources creates challenges and opportunities for reactive power management in the modern electricity grid. Because of the multiplicity of new resources, new computational tools and optimization models are needed in formulating and solving the Optimal Reactive Power Dispatch Problem (ORPD). In this paper, we propose (1) an object-oriented ORPD formulation based on high-fidelity modeling of each device in the network, especially those with VAR/V control capability and (2) a two-step Convex Solution-Sequential Linear Programming algorithm. The proposed method introduces two innovations: (a) high fidelity quadratized models of each component of the power system with emphasis on those components that have VAR/V control capability; and (b) an object oriented convexification of the resulting quadratic OPF problem; the solution is obtained by first solving the convex problem using public solvers for convex problems and them removing the relaxation and solving the original OPF using SLP, starting from the solution of the relaxed (convex) problem

    A general approach to the planning of a transmission network

    Get PDF
    Ph.D.Atif S. Deb

    Integrated Centralized Substation Protection

    Get PDF
    Substation cyber assets are mission critical for protection and control of substations. Managing and ensuring their secure operation is of paramount importance. A known vulnerability is hidden failures which are responsible for about 10% of mis-operations and their detrimental effects on system reliability. The paper presents an integrated centralized substation protection approach that is based on the recently developed setting-less relays which are integrated into a centralized substation protection scheme with the following features: (a) fast, dependable and secure protection of each substation protection zone by a settingless relay, (b) supervision of each settingless relay by validating relay input data by a substation wide state estimator, (c) self-healing against hidden failures by detecting and identifying compromised data and replacing them with estimated values, thus ensuring that the settingless relays will always operate on validated data. The paper provides a summary review of the settingless protective relay and introduces the Integrated Centralized Substation Protection Scheme (ICSP) which uses the data from all settingless relays in the substation to perform a substation wide state estimation. The state estimator uses a hypothesis testing algorithm to determine whether (a) data are valid with no faults or hidden failures, (b) data are valid and a fault exists in the system, or (c) some data are invalid due to hidden failures. In the last case, the state estimator uses the substation state and model to replace the compromised data with estimated values and thus enabling self-immunization against hidden failures. A byproduct of the method is the substation state estimate which is transmitted to the control center where it is used with the state from all substations to synthesize the system wide state estimate and model. Architectural issues are addressed as well as migration issues of existing systems into the proposed ICSP

    Οι σχέσεις Τουρκίας-σουνιτικών ισλαμιστικών ριζοσπαστικών οργανώσεων ως γεωπολιτικός παράγων ανακατανομής της ισχύος στο γεωπολιτικό σύστημα Συρίας - Ιράν - Λιβανου

    Get PDF
    Η παρούσα εργασία ασχολείται με τις σχέσεις Τουρκίας - σουνιτικών ισλαμιστικών ριζοσπαστικών οργανώσεων ως γεωπολιτικός παράγων ανακατανομής της ισχύος, στο γεωπολιτικό σύμπλοκο Συρίας - Ιράν – Λιβάνου, πιο συγκεκριμένα στην εργασία πραγματοποιείται Συστημική Γεωπολιτική Ανάλυση. Σύμφωνα με την Συστημική Γεωπολιτική Ανάλυση που πραγματοποιήθηκε μελετήθηκαν δύο πυλώνες: ο Πυλώνας πολιτικής ισχύος και ο Πυλώνας Άμυνας / Ασφάλειας. Οι Γεωπολιτικοί δείκτες που μελετήθηκαν για τον πυλώνα πολιτικής ισχύος ήταν ο δείκτης Κυβερνητικής αποτελεσματικότητας ( WB / Government Effectiveness : Percentile Rank ) και ο δείκτης Πολιτικής σταθερότητας και απουσίας βίας / τρομοκρατίας ( WB / Political Stability and Absence of Violence / Terrorism : Percentile Rank ). Ο γεωπολιτικός δείκτης που μελετήθηκε για τον πυλώνα Άμυνας / Ασφάλειας ήταν ο δείκτης Πληθυσμού των προσφύγων ανά χώρα ή έδαφος προέλευσης ( Refugee population by country or territory of origin ).The present paper deals with the relations between Turkey and Sunni Islamic radical organizations as a geopolitical factor of power redistribution in the Syria - Iran - Lebanon geopolitical complex, more specifically in the work carried out Systematic Geopolitical Analysis. According to the Systematic Geopolitical Analysis carried out, two pillars were studied: the Pillar of Civil Power and the Pillar of Defense / Security. The geopolitical indicators studied for the political power pillar were the Government Efficiency Index and the Political Stability and Non-Violence / Terrorism Index. The geopolitical indicator studied for the Defense / Security pillar was the Refugee population by country or territory of origin (Refugee population by country or territory of origin)

    Autonomous Multi-Stage Flexible OPF for Active Distribution Systems with DERs

    Get PDF
    The variability of renewable resources creates challenges in the operation and control of power systems. One way to cope with this issue is to use the flexibility of customer resources in addition to utility resources to mitigate this variability. We present an approach that autonomously optimizes the available distributed energy resources (DERs) of the system to optimally balance generation and load and/or levelize the voltage profile. The method uses a dynamic state estimator which is continuously running on the system providing the real-time dynamic model of the system and operating condition. At user selected time intervals, the real-time model and operating condition is used to autonomously assemble a multi-stage optimal power flow in which customer energy resources are represented with their controls, allowing the use of customer flexibility to be part of the solution. Customer DERs may include photovoltaic rooftops with controllable inverters, batteries, thermostatically controlled loads, smart appliances, etc. The paper describes the autonomous formation of the Multi-Stage Flexible Optimal Power Flow and the solution of the problem, and presents sample results

    Geomagnetic Disturbances (GMD) Impacts on Protection Systems

    Get PDF
    This paper provides background and historical events of Geomagnetic Disturbances (GMD), and reviews GMD impacts on power systems equipment, and associated protection and control systems, mitigating measures, and Geomagnetic Induced Current (GIC) monitoring methods. This paper is a summary of the IEEE PES-TR72 report, titled, GMD Impacts on Protection Systems, prepared by the K17 Working Group of the IEEE Power System Relaying and Control committee

    Breaker to Control Center Integrated Protection, Control and Operations Model

    Get PDF
    Technological advances in electric energy system data acquisition systems, time synchronization, and cyber assets used in power system substations, distribution systems, and control centers offer new opportunities to dramatically improve the practice of monitoring, protection, control, and operation of the system. We can make the computer based new technologies smarter and more intelligent to fully automate the basic protection and control functions. The challenges posed to the system from the continuous deployment of renewable resources that are typically inverter interface resources require monitoring of the system at much higher rates and development of protection and control systems that can respond in much faster rates than for conventional systems and they are immune to the characteristics of the new system, namely reduced fault currents and suppressed negative and zero sequence components of the fault currents. We propose a new system that provides validated data at fast rates (once per cycle), protective relays that are immune to the effects of inverter interfaced generation, detect anomalies, and enable the continuous operation of relays and other functions even in the presence of hidden failures in instrumentation. This system will be able to enable the operators to meet the challenges posed by the evolving power system and provides robust solutions to the new requirements
    corecore