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Abstract 

The variability of renewable resources creates 

challenges in the operation and control of power 

systems. One way to cope with this issue is to use the 

flexibility of customer resources in addition to utility 

resources to mitigate this variability. We present an 

approach that autonomously optimizes the available 

distributed energy resources (DERs) of the system to 

optimally balance generation and load and/or levelize 

the voltage profile. The method uses a dynamic state 

estimator which is continuously running on the system 

providing the real-time dynamic model of the system 

and operating condition. At user selected time intervals, 

the real-time model and operating condition is used to 

autonomously assemble a multi-stage optimal power 

flow in which customer energy resources are 

represented with their controls, allowing the use of 

customer flexibility to be part of the solution. Customer 

DERs may include photovoltaic rooftops with 

controllable inverters, batteries, thermostatically 

controlled loads, smart appliances, etc. The paper 

describes the autonomous formation of the Multi-Stage 

Flexible Optimal Power Flow and the solution of the 

problem, and presents sample results.  

 

 

1. Introduction  

A variety of distributed energy resources (DERs), 

such as photovoltaic (PV) units, energy storage systems, 

thermostatically controlled loads, wind turbines, etc. are 

typically connected to modern-day electric power 

distribution systems. As DERs use advanced converters, 

the controllability of the distribution system has 

drastically increased. It is of great significance to 

optimally control the DERs to achieve reliable and 

secure operation as the variability of these resources can 

be substantial. 

Different control schemes for distribution systems 

have been introduced in the literature. Demand response 

(DR) is a program utilized by utilities that motivates 

load changes on the customer side to improves system 

reliability. Both centralized and decentralized control 

strategies are studied in [1], reaching a conclusion 

stating that a hybrid approach achieves the best 

performance. A market-clearing scheme for DR is 

developed in [2], providing incentives to the customers 

enrolled in the DR program. Thermostatically 

controlled loads (TCLs) such as refrigerators and air 

conditioners can participate in direct load control. By 

utilizing the temperature dead-band of such loads, [3] 

proposes to control the ON/OFF operation of an 

aggregation of TCLs through state estimation using the 

Kalman filter. Similar to TCLs, plug-in electric vehicles 

(PEVs) can be controlled to improve the demand profile. 

By using concepts from non-cooperative games, a 

decentralized control strategy is introduced in [4] to 

achieve generation cost minimization and demand 

valley-filling. Another non-cooperative game based 

approach is proposed for the generation side by Chen 

and Zhu [5]. The distributed generation (DG) units can 

be used to mitigate voltage issues as stated in [6], which 

uses a voltage sensitivity approach with the help of 

surface fitting techniques. Due to the growing need for 

AC/DC conversions in distribution networks, AC/DC 

hybrid grids have gained much attention in the power 

system community. For such hybrid systems, a two-

stage stochastic dispatch scheme is proposed in [7] and 

a flexible voltage control strategy using a linearized 

coupling model between DC voltage and AC frequency 

is described in [8]. 

Optimal control actions of a distribution system can 

be obtained by formulating and solving an optimal 

power flow (OPF) problem. Different optimization 

algorithms have been proposed. A gradient based 

centralized control strategy is discussed in [9] and a 

generic algorithm based method developed is compared 
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with a heuristic approach in [10]. Reference [11] 

proposes a distribution network restoration strategy 

using a multi-agent framework and it is formulated as a 

second-order cone programming problem. Quadratic 

programming is used to solve the AC OPF problem for 

distribution systems and compared against non-linear, 

quadratically constrained, and linearized approaches in 

[12]. Locational marginal pricing schemes at the 

distribution level can also be formulated as an OPF 

problem [13], [14].   

The authors of this paper have previously proposed 

a distribution management system (DMS) that achieves 

real-time state estimation, protection, optimization and 

control of the system [15]. Here we propose an 

extension of this approach that uses the state estimation 

results to autonomously form and solve a multi-stage 

flexible OPF (F-OPF) problem for DER penetrated 

distribution systems. “Autonomous” means that the 

whole process is free of human/operator input. Once the 

user enters the models of the individual devices and the 

information of what is measured at the various meters 

and relays, the state estimation is performed 

autonomously, the multi-stage OPF is created 

autonomously from the output of the state estimator, the 

solution is also autonomously calculated, and the 

optimal controls are send to the DERs or other 

controllable devices. “Flexible” means that the 

proposed method includes customer controllable 

resources (DERs) for the operation of the system, thus 

customer flexibility is incorporated. In this paper, a 

stage is defined as a time period with a user-set interval. 

The approach is being implemented in an advanced 

distribution management system under a 

DoE/ENERGIZE project with the plan to demonstrate 

the method on several feeders of the National Grid and 

the New Mexico power company. To our knowledge 

this is the first time that dynamic state estimation is 

linked to autonomous optimization and control of 

distributed energy resources. 

The paper is organized as follows. First we present 

the modeling approach that enables an object oriented 

approach to the state estimation and the subsequent 

autonomous formulation of the F-OPF in section 2. 

Modeling and state estimation are presented in section 

3. The multi-stage F-OPF is presented in section 4. The 

solution method of the F-OPF is presented in section 5. 

Example test results are provided in section 6. Finally, 

concluding remarks are provided in section 7. 

 

2. Description of Overall Approach 

This section provides an overview of the 

autonomous approach, as illustrated in Figure 1. In a 

physical power system, relays and sensors are used to 

measure physical quantities, such as voltages, currents, 

temperatures, etc. These measurements and the 

information of the devices in the system are sent to a 

dynamic state estimator, which runs the quasi-dynamic 

state estimation and provides the validated model as 

well as the estimated operating condition of the system 

to setup the multi-stage F-OPF problem. Forecasts of 

load variations, generation from PV and wind, etc. are 

provided to set up the F-OPF for the future stages. 

Solving such OPF problem yields the optimal control 

actions to be implemented back into the physical plant 

so that the state of the system can be driven towards the 

optimal operating condition. 
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Figure 1: Implementation of the autonomous flexible OPF in a 

distribution system 

 

3. Modeling and State Estimation 

This section introduces the method of physically 

based modeling for devices, which are constructed as 

detailed mathematical objects derived from their 

physical circuit [16], and dynamic state estimation that 

uses these detailed device models to estimate the states 

of the system [17]. In this paper, detailed modeling is 

performed in the quasi-dynamic domain, where only 

slow dynamics like electromechanical transients in 

motors, generators, controllers, etc. are considered. 

 
3.1. Quadratized Device Model 

Each device is modeled as a quadratized device 

model (QDM). The QDM is derived by considering the 

mathematical model of a specific device and casting it 

into the syntax of QDM. In case there are nonlinearities 

of order higher than 2, additional state variables are 

introduced to reduce the nonlinearities to no higher than 

order 2. The general expression of a QDM is 
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( ) 1 1 1 1x u x

d
t Y Y D C

dt
= + + +

x
i x u    (1a) 

2 2 2 20 x u x

d
Y Y D C

dt
= + + +

x
x u   (1b) 

3 3 3 3 3 30 T i T i T i

x u x u uxY Y F F F C

     
     

= + + + + +     
     
     

x u x x u u u x
 (1c) 

T i T i T i

qx qu qx qu qux qY Y F F F C

     
     

= + + + + +     
     
     

h x u x x u u u x
 (1d) 

subject to 0h ,  
qmin qmax

u u u , and 
qlim

du u . 

Vectors i , x , and u  are the terminal currents, states, 

and controls of the device at time t , respectively. The 

states include terminal voltages and device internal 
states. The functional constraints are expressed by h , 
while the lower and upper control bounds correspond to 

vectors 
qmin

u  and 
qmax

u . hlim
u  represents permissible 

step size for the controls of this device. The coefficients 
to the linear and differential terms are stored in matrices 
Y  and D , respectively. The coefficients to the quadratic 
terms are defined in matrices F  and the constant terms 
are given in vectors C . Note that only real-value 

matrices and vectors are used in the QDM. Each device 
model also includes the connectivity information 
(terminal node names).  

 
3.2. Algebraic Quadratic Companion Form 

The device QDM is integrated using quadratic 

integration to yield the algebraic quadratic companion 

form (AQCF). The integration time intervals and step 

are:  , mt t  and  ,t t h+ , where / 2mt t h= +  and h  is 

the time step [18]. The device AQCF syntax is: 
( )

0

0

( )

0

0

( ) ( ) ( )

T i T i T i

x u x u ux

m

x u

T i T i T i

fx fu fx fu fux

t

Y Y F F F B
t

B N t h N t h M t h K

Y Y F F F

 
 
       
        

= + + + + −       
       

      
 
  

= − − − − − − −

    
    

= + + + +    
    
    

i

x u x x u u u x
i

x u i

h x u x x u u u x fC



+




 (2) 

subject to 0h ,  
min max

u u u , and 
lim

du u . A 

past history vector B  is introduced to store the model 

information from the previous simulation time step. The 

dimensionality of the AQCF is twice that of the QDM 

since it contains information from both time t  and mt . 

The matrices and vectors in (2) can be formed directly 

from those in (1) as follows. 

1 1 1

1

2 2 2
2

3

3 3

1
1

1 1 1

2
2

3
2 2 2

3

3

4 8

0

04 8 0

0

0 0 3    
1 2 0 2

2 0 3

1 2 20
2

0

x x x

u

x x x
u

x u

x u

u
x x x

u

u
x x x

x

D Y D
h h

Y
D Y D

Yh h C

Y Y
Y Y K C

Y
D D Y

h h Y
C

YD D Y
h h C

Y

 
+ −   

    
   + −  
    
    
   = = = 
    +    
    
    +
     
 

 

3 3 3

3 3 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
    

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

x u ux

x u ux

x u ux

F F F
F F F

F F F

     
     
     
     

= = =     
     
     
     
          

 

1 1
1

( )

2
2 2

1
( )

1 1

2

2 2

4

4
0

0
0

0 1    1
1 5 2

2
2 2 1

0
1 5 2

0
2 2 0

0

x x
u

size i

u
x x

x u u
size i

x x

u

x x

Y D
Yh I
Y

Y D
h

N N MY
I

Y D
h

Y

Y D
h

 
− +  − 

    −     − +
    
    
    = = =
   − −     
    
    −        

 

 

0 0
     

0 0

0 0 0
    

0 0 0

    

qx qu q

fx fu f

qx qu q

qx qu qux

fx fu fux

qx qu qux

Y Y C
Y Y C

Y Y C

F F F
F F F

F F F

     
= = =     
     

     
= = =     
     

     
= = =     
     

qmin qmax qlim

min max lim

qmin qmax qlim

u u u
u u u

u u u

 

AQCF is a standard syntax for modeling any device. 

The common syntax enables object-orientation of any 

application that uses the AQCF models. The states of the 

physically based device models satisfy every physical 

law and functional constraint, which makes the 

simulation results more realistic. 

 
3.3. Device Modeling Example 

We present the QDM model of a capacitor with 

discrete controls as an example that demonstrates that 

the discrete controls are transformed to continuous 

variables. Let u  represent the discrete capacitor 

ON/OFF switching, 0u =  means capacitor is OFF, 

1u =  means capacitor is ON. The QDM is: 

 

( )

( )

( )

1 21

1 21

2

2
2

0

0

0 1

0

r r rr i

i i ii r

r i

i r

w V V uI Cw

w V V uI Cw

I Cw p u u

I Cw p q









= − −= −

= − −=

= = − −

= − = −

  (3) 

where 2 f =  and f  is the fundamental frequency. 

Subscripts r  and i  correspond respectively to the real 
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and imaginary parts of the complex variables. Since in 

the QDM standard syntax, the quadratic terms are 

placed in equation set (1c), rw  and iw  are additional 

variables introduced to satisfy the standard. States p  

and q  are used to convert the binary control into a 

continuous variable between 0 and 1. At a solution the 

value of u will be either 0 or 1. The through variables 

are 1rI , 1iI , 2rI  and 2iI , while the state variables are 

1rV , 1iV , 2rV , 2iV , rw , iw , p  and q .  

 

1V 2V
2I1I

C

u
 

Figure 2: Capacitor circuit with switching capability 

 

The next step is to obtain the corresponding AQCF 

of the capacitor. The total number of states in the AQCF 

is 16, including time t  and mt  variables. Note that the 

resulting AQCF model does not have discrete control 

variables. However, when all equations of the model are 

satisfied the physical solution will correspond to the 

capacitor being ON or OFF. 

 

Device 1

AQCF + Connectivity

Device 2

AQCF + Connectivity

Device n

AQCF + Connectivity

.

.

.

Device Models

Equations

States

Constraints

Mapping Lists

Controls

Network AQCF

 
Figure 3: Network model construction process 

 
3.4. Construction of the Network Model 

Given the models of devices in the system in the 

AQCF syntax, the model of the entire system (network) 

is generated autonomously in the AQCF syntax as well. 

Mathematically, this is achieved as follows. At each 

node of the system, the physical law that relates the 

variables at this node are written. In case of an electrical 

node, this corresponds to Kirchhoff’s current law 

(KCL). For nodes that are the interface of the system, 

the corresponding device equations remain the same. 

For common nodes, the device equations corresponding 

to one common node are combined by eliminating the 

through variables of the devices connected to that node 

and expressed in terms of the states.  

The final expression of the network model consists 

of the equations at each node derived from KCL, as well 

as internal equations, functional constraints and control 

bounds of each device. During this process, mapping 

lists are first created based on the device connectivity to 

map the equations, states, controls and constraints from 

device level to network level. Then, with the device 

models, the network AQCF is automatically obtained. It 

has the same syntax as the device AQCF: 
( )

0

0

( )

0

0

( ) ( ) ( )

T i T i T i

nx nu nx nu nux n

m

n nx nu n n

T i T i T

nfx nfu nfx nfu

t

Y Y F F F B
t

B N t h N t h M t h K

Y Y F F

 
 
       
       

= + + + + −       
       

      
 
 

= − − − − − − −

   
   

= + + + +   
   
   

n

i

x u x x u u u x
i

x u i

h x u x x u u u
i

nfux nfF C

 
 

+ 
 
 

x

 (4) 

subject to 0
n

h ,  
nmin nmax

u u u , and 
nlim

du u , 

where subscript n  refers to the network. The entire 

network formulation process is illustrated in Figure 3. 

 
3.5. Dynamic State Estimator 

Given the formulated network AQCF and available 

measurements in the network, the state estimator is able 

to operate automatically and output estimated states of 

the network for the OPF application. 

With the available measurements in the network, the 

state estimator first creates the network measurement 

model consisting of four measurement types, i.e., a) 

actual measurement: measurements obtained from IEDs 

and created by the device AQCF and device-to-network 

mapping lists, b) derived measurement: created by 

derivations from actual measurements based on the 

network topology, c) virtual measurement: obtained 

from the network AQCF that provides the network KCL 

equations at the common nodes and the device internal 

equations, and d) pseudo measurement: created by 

knowing its approximate value (e.g, zero value for 

voltage at neutral phase during normal operation) with a 

relatively high measurement error. By combining all 

these measurement types together and substituting 

control variables with actual values from the control 

center, the network measurement model is formed in a 

similar syntax as the network AQCF: 

     ( ) ( ),

( ) ( )

T i

m zx zx z

z zx z z

t t y Y F B

B N t h M t h K

 

 
 

= + = + − + 
 
 

= − − − − −

z x x x x

x i

 (5) 
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where subscript z  refers to measurement model and   

is the measurement error. 

The state estimator works directly on the formulated 

network measurement model and provides the best 

estimate of the network states. The state estimator is 

based on the weighted least square method with the 

objective function being: 

 ( )( ) ( )( )Minimize  
T

J y W y= − −z x z x   (6) 

where W is a diagonal weight matrix with the weights 

defined as the inverse of the squared standard deviation 

of each measurement. The solution is computed by the 

following iterative equation: 

 ( ) ( )( )
1

1k k T T kH WH H W y
−

+ = − −x x x z   (7) 

where H  is the Jacobian matrix of ( )y x .  

Once the solution is obtained, chi-square test with 

computed confidence level is applied, which provides a 

mathematical method of evaluating the consistency 

between the measurements and the system model: 

 
( )

( )

2

1 Pr ,

i i

i i

y z

P n






− 
=  

 

= −


x

  (8) 

where i  is the standard deviation of each 

measurement, n  is the degree of freedom (difference 

between number of measurements and states),   is the 

chi-square value, and P  is the confidence level. A low 

confidence level indicates bad data or hidden failures, 

while a high value (e.g., 100%) implies that the network 

AQCF is consistent with the measurements and the 

estimated states are trustworthy.  

 

4. Autonomous Multi-Stage Flexible OPF 

Formulation 

A multi-stage OPF problem is autonomously 

formulated by stacking the network AQCF in (4) for 

several stages, as an extension of our previous work 

[19]. The state estimator also provides the best estimate 

of the states and controls. The main tasks are (a) 

objective function generation and (b) stacking network 

AQCF for multiple stages of the horizon.  

 
4.1. Autonomous Objective Function Creation 

The OPF objective function is user-selected from a 

list of objective functions. In this paper, we focus on an 

objective function that levelizes the voltage profile 

across the network. We define the objective function to 

be minimizing the sum of squared voltage magnitude 

mismatches (differences between voltage magnitude 

and desired voltage value) at selected buses. The 

mathematical expression of this objective function is: 

 

2

, ,

,

min
bus

i mag i des

i S i i des

V V
J

V

 −
=   

 
    (9) 

where busS  is the set of selected buses and bcS  is the set 

of binary control variables. 
,i magV  and 

,i desV  are the 

voltage magnitude and desired voltage value at bus i , 

respectively, while i  is a pre-defined tolerance value 

(e.g., 5%) at that bus. 

The objective function in (9) is converted to a 

standard quandratized form: 

    T T T T T

ox ou ox ou oux oJ Y Y F F F C= + + + + +x u x x u u u x   (10) 

where subscript o  is used to denote the coefficients 

corresponding to the objective function, whose terms are 

also at most second order.  

Note also that any discrete control variables in the 

system are converted into continuous variables at the 

device level. We presented earlier the example of a 

switchable capacitor as an example with discrete control 

(ON/OFF). When the model is quadratized, the discrete 

control variable u  is constrained by additional equations 

in terms of additional variables that make the system 

continuous, but the solution of these equations will yield 

the correct value for the variable u . Specifically, the 

additional variable p  is introduced so that the equation 

( )0 1p u u= − −  is appended to the device model. The 

objective function in (9) becomes 

 

2

, ,

,

min
bus bc

i mag i des

i i

i S i Si i des

V V
J M p

V 

 −
= +  

 
    (11) 

where iM  corresponds to the weight of state ip  related 

to binary control iu . The weights are large numbers to 

make sure that variables p  are driven to 0, thereby 

making binary controls u  equal to 0 or 1. 

 
4.2. Quadratized OPF Model 

Addition of an objective function to the network 

AQCF yields the quadratized OPF model (QOPFM): 

( )

( )

( )

min ,

s.t. , 0

, 0

T T T T T

ox ou ox ou oux oJ Y Y F F F C= + + + + +

=



 
min max

x u x u x x u u u x

g x u

h x u

u u u

 (12) 

The system operating point is referred to as ( ),x u , 

consisting of all state and control variables introduced 

by the individual devices in the system. Equality vector 

g  in (12) is derived from the equations in (4) as 

( )

( )

,

( ) ( ) ( ) ,

T i T i T i

nx nu nx nu nux

nx nu m

Y Y F F F

N t h N t h M t h K t t

     
     

= + + + +     
     
     

+ − + − + − + −

g x u x u x x u u u x

x u i i

 (13) 
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where ( ), mt ti  is ( ) ( )0 0 0 0
T

mt t  i i . Note 

that (13) includes both KCL equations at common nodes 

and device internal equations. Inequality vector h  as 

well as control bounds min
u  and max

u  in (12) are 

directly adopted from the network AQCF, containing 

device functional constraints and control bounds. 

The QOPFM described is a single-stage quadratic 

OPF problem, including time t  and mt . A multi-stage 

problem is formed by combining multiple single-stage 

QOPFM into one. Three stages are considered in this 

paper, containing time periods 2t , 1t  and 0t , each 

having its own time mt  component. The time interval 

between two consecutive time periods is h . The multi-

stage QOPFM can also be represented by the structure 

in (12), with its matrices and vectors formed as 

    

s s s

ox ou o

s s s

ox ox ou ou o o

s s s

ox ou o

Y Y C

Y Y Y Y C C

Y Y C

     
     

= = =     
     
     

 

0 0 0 0

0 0   0 0

0 0 0 0

s s

ox ou

s s

ox ox ou ou

s s

ox ou

F F

F F F F

F F

   
   

= =   
   
   

  

0 0 0 0

0 0   0 0

0 0 0 0

s s

oux x

s s

oux oux x x

s s

oux x

F Y

F F Y Y

F Y

   
   

= =   
   
   

  

0

0 0 0 0

0 0     0 0

0 0 0 0 0

s s s

u x

s s s

u u x x

s

u

Y K N

Y Y K K N N

Y B

     
     

= = =     
     −     

  

0 0 0 0

0 0   0 0

0 0 0 0 0 0

s s

u

s s

u u

N M

N N M M

   
   

= =   
   
   

  

0 0 0 0

0 0   0 0

0 0 0 0

s s

fx fu

s s

fx fx fu ou

s s

fx ou

Y Y

Y Y Y Y

Y Y

   
   

= =   
   
   

 

0 0 0 0

0 0 ,   0 0

0 0 0 0

s s

fx fu

s s

fx fx fu fu

s s

fx fu

F F

F F F F

F F

   
   

= =   
   
   

 

0 0

0 0 ,   

0 0

s s

fux f

s s

fux fux f f

s s

fux f

F C

F F C C

F C

   
   

= =   
   
   

  

,   ,   

s s s

s s s

s s s

     
     

= = =     
     
     

min max lim

min min max max lim lim

min max lim

u u u

u u u u u u

u u u

  

where subscript s  stands for single stage. 0B  is the past 

history vector for the first stage 0t  provided by the state 

estimator together with the initial operating condition at 

time 0t . The state, control and through vectors also 

include variables from the three stages. Thus, operating 

point ( ),x u  contains information at time 2t , 1t  and 0t . 

 

5. Solution Method by Sequential 

Linearization / Linear Programming  

To solve the multi-stage F-OPF problem, we use a 

sequential linear programming (SLP) technique. The 

algorithm is illustrated in Figure 4. Given the multi-stage 

QOPFM, with the operating point and past history vector 

0B  at time 0t  provided by the dynamic state estimator, 

the OPF problem is solved through a successive process 

of constraint violation check, linearization, linear 

program (LP) solving and operating point update.  

 

Obtain quadratized OPF model 
Retrieve operating point and 
past history vector at time t0 

Compute initial operating point 
(x0,u0) for three time stages

Constraint violations?

Linearize objective function
Linearize model constraints

Check constraint violations
Add new model constraints 

No

  =  +1

Implement optimal control 
actions

Start

End

Adjust control excursion limits

Algorithm converged?

Apply control excursion limits
Solve linearized OPF problem

Yes

Check algorithm convergence

Update operating point
Compute (xv+1 ,uv+1)

Compute objective value Jk+1

Yes

No

 
Figure 4: Sequential linear programming algorithm 

 
5.1. OPF Model Linearization 

In the SLP algorithm, we define model constraints 

as the inequalities to be linearized and considered in the 

following LP. During each iteration  , the operating 

point ( ), 
x u  is substituted into the inequality 

constraints ( ),h x u . Constraint i  is violated if  

( ) 1,ih   x u , where 1  is a preset small positive 

number. The newly violated constraints are added to the 

set of model constraints. Then, the multi-stage QOPFM 

is linearized with respect to the control variables, giving 

the linearized OPF model (LOPFM). These two 

procedures ensure that the size of the problem to be 

solved is the smallest possible in every iteration. 
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Linearization of the QOPFM in (12) around 

operating point ( ), 
x u  yields 

       
( ) ( )

( )

( ) ( )
( )

,
, ,

,
, ,

dJ
J J

d

d

d

 

 

 

 

 +

 +
m

m m

x u
x u x u d

u

h x u
h x u h x u d

u

 (14) 

where 
= −d u u  and ( ),

m
h x u  is the vector of model 

constraints. The derivatives in (14) are computed by 

   

( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,

dJ J J d

d d

d d

d d

     

     

 
= +

 

 
= +

 

m m m

x u x u x u x

u u x u

h x u h x u h x u x

u u x u

  (15) 

From equality constraints ( ), 0=g x u , we have 

               
( ) ( ), ,

0
d

d

    
+ =

 

g x u g x u x

u x u
  (16) 

where the derivative of x  with respective to u  is 

calculated as 

            
( ) ( )

1

, ,d

d

   
−

  
 = −
  
 

g x u g x ux

u x u
  (17) 

Since all the coefficient matrices have been defined and 

formed, the following partial derivatives can be 

computed directly. 

( )
     

, T T
T T i i i

ou ou ou oux

J
Y F F F

 

  


= + + +


x u
u u x

u
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g x u
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  (18f) 

To reduce linearization errors, maximum 

permissible control excursions lim
u  are utilized and 

 
min max

d d d  is imposed as bounds on the control 

variations between two consecutive iterations. Every 

entry i  in min
d  and max

d  are given by 

 
( )

( )

min, min, lim,

max, max, lim,

max ,

min ,

i i i i

i i i i

d u u u

d u u u





= − −

= −
  (19) 

After completion of the linearization process, the 

LOPFM can be written in the general form: 

 
( )min

s.t. 0

TJ c e

a b

= +

+ 

 
min max

d d

d

d d d

  (20) 

where from (14) – (17) the following holds. 
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5.2. Operating Point Update 

Once the LP in (20) is solved in iteration   and the 

solution is 


d , control variables 
1  + = +u u d  are 

updated. As the state and control variables obey the 

equalities ( ), 0=g x u , these equations are used to solve 

for the updated states 
1 +

x  through the Newton-Raphson 

method. The steps are listed as follows: 

1) Let 0 =  and 
 =x x , where   is the iteration 

 number in the Newton-Raphson method used to 

 obtain the state variables 
1 +

x  in iteration  . 

2) Substitute 


x  and 
1 +

u  into the QOPFM equations 

 and compute ( )1,  +
g x u . If ( )1

2,  +


g x u , 

 where 2  is a pre-defined tolerance value, the 

 procedure terminates and 


x  is the solution 
1 +

x ; 
 otherwise, go the the next step. 

3) Compute the Jacobian matrix ( )1,  + g x u x , 

 which can be easily achieved using equation (18f). 

4) Calculate 
1 +

x  as 

     
( )

( )

1
1

1 1
,

,

 

   

−
+

+ +
 
 = −
 
 

g x u
x x g x u

x
  (22) 

5) Make 1 = + . If max  , where max is the 

 maximum number of iterations allowed, go to step 

 2); otherwise, non-convergence is reported. 

With the new operating point ( )1 1, + +
x u  found, the 

objective value ( )1 1,J  + +
x u  is calculated and 

compared with the objective value from the previous 

iteration. If ( ) ( )1 1, ,J J   + + x u x u , the control 

excursion limit for each non-binary control i  is halved. 

The excursion limits for binary variables remain at 1. 

Then, the algorithm continues to iteration 1 +  and the 

updated operating point is substituted back into the set 

of inequality constraints ( ),h x u  to check if any of them 
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are violated. Since the LOPFM only includes the 

previous model constraints, the updated operating point 

may not satisfy all inequality constraints in the QOPFM. 

The newly violated constraints become the new model 

constraints. The QOPFM is re-linearized with respect to 

the new operating point and same procedures follow.  

Note that when the algorithm starts with the state and 

control variables, as well as the past history vector, at 

time 0t , the variables at time 1t  and 2t  are computed via 

the Newton-Raphson method, thus obtaining the initial 

operating point ( )0 0,x u .  

 
5.3. Algorithm Convergence 

If the updated operating point ( )1 1, + +
x u  satisfies 

all the inequality constraints during iteration 1 + , the 

algorithm convergence is determined. There are two 

criteria to be checked: 

( ) ( )1 1

3 4, , andJ J     + + −  
n

x u x u du  (23)  

where 3  and 4  are small positive values. Since 

different controls have different units and are under 

different scales, the control excursions need to be 

normalized before they can be used as a convergence 

criterion. Hence, every element i  in the vector of 

normalized control steps 

n
du  is computed as 

0

, lim,n i i idu d u = , where 0

lim,iu  is the original excursion 

limit before any adjustment is applied for control i . 

The SLP algorithm converges when both criteria in 

(23) are satisfied. The optimal operating point is 

( )1 1, + +
x u  with 

1 +
u  being the optimal control actions 

to be implemented. If either criterion is not satisfied, a 

new iteration of QOPFM linearization and LOPFM 

solving is required considering the new operating point. 

In general, convergence cannot be guaranteed for this 

optimization problem (multi-stage OPF) in the strict 

mathematical sense. The problem is a non-convex 

optimization problem and one of the most complex. 

From the practical point of view the solution does 

converge to a feasible and stable solution (typical a local 

optimum) as long as the system has enough controls. 

 

6. Example Test Results  

The proposed multi-stage F-OPF approach is tested 

on an example system with DER penetration at the 

distribution level. This section first describes the system 

and presents the test results afterwards. The model, as 

well as the initial operating point and past history vector 

at time 0t  are provided by the state estimator, which uses 

“measurements” created by a simulator. 

 
6.1. System Description 

 The example test system is shown in Figure 5, 

including both transmission and distribution networks. 

The 115 kV transmission system has two generators, 

one (G1) at slack bus BUS1 and the other (G2) at BUS6. 

Transformers T1 and T2 are used to step up the voltages 

from 18 kV and 15 kV to 115 kV at BUS2 and BUS5, 

respectively. The 115 kV transmission lines connecting 

BUS2 to BUS3, BUS2 to BUS4, BUS3 to BUS5, BUS3 

to BUS7, BUS4 to BUS5, BUS5 to BUS8, BUS7 to 

BUS8, and BUS8 to BUS9 are respectively 35 miles, 25 

miles, 22 miles, 32 miles, 18 miles, 51 miles, 35.2 miles, 

and 19.2 miles long. A three-phase capacitor bank is 

located at BUS9. Note that the capacitor bank model is 

just like the capacitor model demonstrated in section 

3.3, except that it has three phases instead of one. 

However, it is uncontrollable and set to be ON the whole 

time in this test system. 

Transformer T3 steps down the transmission voltage 

at BUS7 to 13.2 kV distribution level at BUS10. A PV 

source with battery has a voltage setpoint of 480 V at 

BUS13, which is stepped up to 13.2 kV at BUS14 by 

transformer T4. An AC/DC converter converts 13.2 kV 

AC to 25 kV DC from BUS15 to BUS16, supplying a 

DC load at BUS17. The AC distribution lines 

connecting BUS10 to BUS11, BUS10 to BUS14, 

BUS11 to BUS12, BUS14 to BUS15 have lengths of 1 

mile, 1 mile, 2 miles and 2 miles, respectively, while the 

DC line between BUS16 and BUS17 is 2 miles long.  

 

Figure 5: Example test system 
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Table 1: Loads at the various buses of the test system 

Bus BUS3 BUS4 BUS8 BUS9 

Load 
38 MW 

10 MVar 

100 MW 

30 MVar 

55 MW 

15 MVar 

31 MW 

8 MVar 

Bus BUS11 BUS12 BUS15 BUS17 

Load 
2 MW 

1 MVar 

3.5 MW 

1.2 MVar 

3 MW 

0.8 MVar 
1 MW 

 

Every bus in the test system has a ground impedance 

of 1 Ω. The rated power consumptions of the loads are 

provided in Table 1, while the controls with their 

excursion limits and initial values are listed in Table 2. 

The time interval h  used in this example is 5 minutes. 

 
Table 2: List of controls available in the test system 

Device Control Variable 
Excursion 

Limit 

Initial 

Value 

Generator 

G1 
Voltage Setpoint  0.01 pu 1.0 pu 

Generator 

G2 

Real Power Output  12.5 MW 180 MW 

Voltage Setpoint  0.01 pu 1.0 pu 

Transformer 

T1 
Tap Setting  0.02 1.0 

Transformer 

T2 
Tap Setting  0.02 1.0 

Transformer 

T3 
Tap Setting 0.02 1.0 

PV Source 

with Battery 

Voltage Setpoint  4.8 V 480 V 

Battery Real Power 

Output  
0.06 MW 0.1 MW 

AC/DC 

Converter 

DC Voltage 

Setpoint  
0.25 kV 25 kV 

AC Side Reactive 

Power Output 
0.09 MVar 0.5 MVar 

 

The voltages selected to be levelized are the three-

phase voltages at BUS3, BUS4, BUS8, BUS9, BUS12 

and BUS15, as well as the DC voltage at BUS17. The 

desired voltage desV  at transmission and distribution AC 

buses are 66.395 kV and 7.621 kV, respectively. The 

desired voltage at the DC bus is 25 kV. Tolerance   

has the same value of 5% over all monitored buses. 

 
6.2. F-OPF Results 

Given the initial control values, the system 

simulation is run, providing the states and past history 

vector at time 0t , which are used to compute the initial 

operating point. Note that in practice, the information at 

time 0t  is provided by a dynamic state estimator. Pre-

defined values 1  and  are 0.0001, while 3  and 4  

are 0.005. The algorithm takes 40 iterations to converge. 

The objective value is plotted in Figure 6, while the 

three-phase voltages at BUS9 and BUS12 with the DC 

voltage at BUS17 at time 2t  are given in Figure 7. 

 
Figure 6: Objective function value vs iteration count 

 

Although we show the evolution of the algorithm 

over 40 iterations, it can be noticed from Figure 6 and 

Figure 7 that the results do not change much after 10 

iterations. Therefore, we can slightly increase tolerances 

3  and 4  to speed up the process. The final objective 

value is about 1.1 and the voltages are close to their 

desired values. Other selected voltages are not shown 

here due to limited space, but they are also driven 

towards their desired values over the iterations. 

 

 

 

 
Figure 7: Voltages at BUS9, BUS12 and BUS17 vs iteration 

count 

 
The optimal controls obtained upon convergence are 

the same at all three time stages. The voltage setpoints 

of G1 and G2 are 1.0106 pu and 1.0139 pu, respectively. 

The G2 real power output is 170.7715 MW. The tap 

settings of T1, T2 and T3 are respectively 1.0212, 

1.0277 and 1.0412. For the PV source with battery, its 

voltage setpoint is 483.8438 V, while its battery real 

2
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power output is 0.1443 MW. The controls of the AC/DC 

converter are 25.0303 kV for the DC voltage output and 

0.5552 MVar for the AC side reactive power output. 

 

7. Conclusions 

This paper proposes a real-time autonomous 

approach of formulating and solving a multi-stage 

flexible OPF problem with the system operating data 

provided by a dynamic state estimator that estimates the 

system states with measurements collected by relays and 

sensors. Distribution systems penetrated with DERs are 

optimized against a list of user-selected objective 

functions. Optimizing the voltage profiles at selected 

buses over three consecutive time stages is illustrated.  

The method is based on physically based modeling, 

which uses the AQCF standard syntax to represent the 

device and network models. The QOPFM is directly 

formed and linearized with respect to the system 

controls using the network model. The problem is 

solved using an SLP algorithm. Results from an 

example test system are provided. The test results 

demonstrate the autonomous formation and solution of 

the multi-stage OPF problem.  
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