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SUMMARY 

This thesis addresses the problem of optimal expansion planning 

of an electric power transmission network over a finite planning inter

val. A procedure has been developed which yields an expansion policy, 

optimal with respect to a flexible economic criterion, and which 

incorporates realistic network constraints. 

The problem is formulated as a discrete time deterministic 

optimal control problem. 

A control at a time t is defined as the transmission facilities 

to be put in service at this time. To be determined is an optimal 

sequence of controls which will provide an admissible transmission 

system at any time during the planning period. An admissible trans

mission system is defined in terms of operational constraints of network 

security and reliability. These constraints require the solution to the 

problem of power flow on the network. The flow of power is modeled with 

the Kirchhoff's network laws, simplified at some degree. 

The objective is the minimization of the economic cost of the 

expansion policy. This cost consists of investment cost, cost of energy 

and power losses, and financial charges. The definition of the economic 

cost is very general. The terminal value of the system at the end of 

the planning period is automatically accounted for. 

The controls are assumed to be discrete because of standardization 

of transmission facilities. There is a tremendous number of controls 



which can be applied for the expansion of a transmission system. How

ever, because of the existing network coherency (Chapter III) in power 

transmission systems and by using upper bounds created by the optimizing 

algorithm, the number of admissible discrete controls is limited to a 

manageable one. An algorithm, consisting of a detection scheme, a 

feasibility condition, and an optimality condition, generates the 

admissible controls. 

The optimization problem is solved by a non Linear Branch and 

Bound method. It is developed from an enumerative algorithm. Histori

cally, enumerative algorithms have not been considered for this problem 

because of its size. However, the transmission network planning 

problem with finite planning period is a bounded problem. The non 

Linear Branch and Bound method, with the aid of the algorithm which 

generates the admissible controls, is able to compute the bounds at the 

beginning of the algorithm. Enumeration of the trajectories is then 

limited by these bounds. 

The non Linear Branch and Bound has low storage requirements. 

In-core solution can be obtained for even large transmission systems. 

Cost escalation and construction lead times are handled without extra 

complications. 

The general transmission planning problem can be solved by 

Dynamic Programming too. However, application of Dynamic Programming 

to the problem of this thesis encounters huge practical difficulties. 

A tremendous amount of data is required to be stored and retrieved 

during the computations. The important cases of cost escalation and 

lead time of the construction of transmission lines tend to increase the 



dimensionality of the problem. These practical difficulties are dis

cussed in Chapter V. This chapter is basically independent from the 

rest of this thesis and may be skipped without loss of continuity. 

It has been mentioned that the flow of power is modeled with 

the Kirchhoff's network laws, simplified at some degree. This simpli

fication is not necessary. The exact Kirchhoff's laws can be used for 

the power flow model. Accuracy is increased at the expense of efficiency. 

Chapter VI is denoted in a discussion of the computational requirements 

with the exact power flow model. Again, this chapter is independent 

from the rest of this thesis and may be skipped without loss of 

continuity. 

The planning procedure of this thesis has been implemented and 

tested. Two test systems have been used. A detailed evaluation of 

the performance of the algorithm is given in Chapter VII. The conclusions 

of this evaluation are: (a) The storage requirements of the algorithm 

are low. As a matter of fact, in-core solutions can be achieved for 

even large networks. (b) The present planning algorithm yields the 

global optimum with high level of confidence. (c) The execution time 

of the algorithm is reasonable. 

The method of this thesis is very flexible. Operational controls 

in power systems can be included in the formulation of the transmission 

planning problem. The impact of just one operational control, the 

corrective rescheduling of the generator outputs, on the transmission 

planning problem has been investigated. It is concluded that corrective 

rescheduling yields considerable savings. 



In summary, this thesis reports the successful application of 

an enumerative optimization process to a huge discrete optimization 

problem, the electric power transmission network planning over a 

finite period of time. 
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CHAPTER I 

INTRODUCTION 

General 

The subject of this dissertation is the long range planning of 

a power transmission network. The specific problem considered is to 

determine the most economical expansion policy of an electric power 

transmission network over a finite planning period. The problem is 

formulated as a discrete time deterministic optimal control one. The 

solution of this problem is achieved by the non Linear Branch and Bound 

method. This optimization algorithm is developed from an enumerative 

procedure by taking advantage of specific properties of the problem. 

The problem of planning a transmission network is a huge 

computational problem. The reasons are: 

(a) The decisions the planner has to make are 

discrete because of standardization of 

transmission equipment. 

(b) There is an enormous number of discrete 

alternative decisions for expanding a 

transmission network. 

(c) The constraints to be satisfied by the 

transmission network are numerous and 

non linear. 



Because of the size of the problem enumerative approaches have 

not even been considered for its solution. Enumerative approaches, 

however, possess great advantages: 

(a) They provide the optimal solution for any 

class of problems. 

(b) Non-linearities in the equations are easily 

handled. 

(c) They provide flexibility in the mathematical 

modeling of the problem. 

(d) The implementation of an enumerative algorithm 

is relatively simple. 

Because of the forementioned advantages, an enumerative approach 

is attractive for problems which assume discrete solutions and which 

are conceptually complex. The transmission planning problem falls in 

this class of problems. In general, it can be formulated as an optimal 

control problem. The controls or alternative decisions to expand a 

transmission network are discrete and numerous. This thesis reports 

that information from the optimization method and constraints which 

have to be satisfied by the controls can be used in order to prove that 

the majority of the discrete controls are not qualified to be in the 

optimal trajectory. The controls which can not be disqualified are 

limited in number. These controls should enter the optimizing algorithm. 

An enumerative approach is practically feasible in this case. The non 

Linear Branch and Bound is developed from an enumerative approach. It 



takes advantage of the specific properties of the problem in order to 

disqualify the majority of the discrete controls. This function is 

analyzed in Chapters III and IV. 

In the following sections the general objectives and require

ments of a planning study for a transmission network will be stated in 

loose terms. The existing methods for the solution of the problem will 

be presented. Their capabilities and shortcomings of the most repre

sentative methods will be discussed. Conclusions will be drawn which 

lead from these methods to the method of this thesis. 

Objectives and Requirements 

In the 20th century the use of electricity has been spread in 

almost every human endeavor. This is so because it is easy and simple 

to convert electric energy in any other form of energy. Today the 

economic life of a community depends heavily on the availability of 

electric energy. Large power systems generate and distribute electric 

energy to the users. 

Figure 1.1 shows the basic structure of a power system. Genera

tion plants convert energy of some type (thermal, hydro, nuclear) into 

electric energy. The electric energy is transmitted through network 

type systems to the consumers of electric energy. 

Vertically, the power system is divided roughly into four 

layers: 

(a) Distribution level 

(b) Subtransmission level 

(c) Transmission level 



(d) Tie line system (which connects a number of 

power systems into a power pool). 

Horizontally, each layer divides into a large number of systems 

which are isolated electrically (and usually geographically) from their 

neighboring systems of the same level, and they are electrically con

nected with each other only through the systems of higher vertical 

layers. The purpose of connecting the individual power systems by tie 

lines is to pool their facilities with the aim of mutual economy and 

for assisting each other during emergencies. 

The demand for electric energy is increasing at a rate of seven 

to ten per cent annually. This trend is likely to continue for many 

years to come. Power systems will have to increase their generation 

and network capacity in order to meet the demand. In view of the ex

tremely high investment costs of the power systems, it is imperative to 

thoroughly analyze the way of increasing the capacity of the power system 

in order to make maximum use of the available resources. The power 

system planner is facing a challenging and complex problem. It is, 

however, a worthwhile problem because even small improvements in the 

planning practices will mean large savings. 

This thesis addresses itself to the problem of planning a trans

mission network. 

The transmission network consists of transmission lines which 

carry the electric energy from the plants, where it is generated, to 

places close to consumption centers. There the electric energy is 

supplied to the subtransmission system. The transmission network 
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carries bulk amounts of power at usually extra high voltages and above. 

The transmission network should meet certain requirements which 

are discussed below. 

Reliability 

The system should be able to provide the customers with electric 

energy continuously. Any interruptions will cause inconvenience to the 

customers and will curtail revenues for the power company since there 

will be customers willing to buy electric energy but cannot do so. 

Furthermore, in the case of an interruption, restoration of service is 

always costly. Since the transmission network carries bulk amounts of 

energy, an unreliable network may cause frequent interruptions of 

service to a large number of consumers, a highly unfavorable performance 

to both the electric utility and the customers. 

Security 

A transmission network is subject to random events such as 

lightning, short circuits, accidents, etc. which may cause the loss of 

transmission lines, if such an event did happen and the system lost 

some of its facilities, would the remaining system be able to operate 

safely? It should be understood that the operation of the power system 

is a dynamic phenomenon and any sudden disturbance will cause oscilla

tions. If the transmission network is not well designed, the oscilla

tions might drive the system out of stability and possibly to a complete 

or partial blackout. This has actually happened in many systems. 

Efficiency 

The transmission of power should be done with minimum losses on 

the transmission network. Energy lost is money lost. Furthermore, a 
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lossy transmission network calls for more installed generating capacity 

and therefore higher investment costs. It is, therefore, desirable to 

transmit power in an efficient way. 

The demand for electric energy increases with time and in order 

to meet the reliability, security, and efficiency requirements, more 

capacity should be added to the system. Transmission capacity can be 

added only in discrete quantities. The characteristics of the lines to 

be added to the system have to be chosen among several standard types 

(e.g. 230 kV, 345 kV, 500 kV, etc.). This presents mathematical 

difficulties since we are dealing with variables which take discrete 

values. 

Finally, the economics is of major concern. We are facing the 

problem of achieving the maximum result with minimum use of resources. 

Every available resource (labor, land, capital, etc.) can be translated 

into dollar figures. It is then appropriate to talk about cost. The 

major objective in long range planning is to minimize the cost over a 

long period. The investment level of individual decisions is not of 

primary interest. However, in the actual implementation of a timed 

series of decisions, the investment level might be a burden because 

of budgetary limitations. 

Because of the extremely high investment costs of the transmission 

networks, it is imperative to have procedures for adding the right kind 

of equipment at the right time in the right location to achieve the 

desired level of quality of service at lowest cost over a long period. 

It is believed that the use of high speed electronic computers in the 

field of system planning should be directed towards optimization rather 



than mechanization of planning procedures. 

In this work, the problem of planning a transmission network is 

formulated as an optimization one. The objective is to minimize a 

flexible economic criterion subject to security, reliability, and 

discrete circuit additions constraints. 

State of the Art 

The problem of choosing an optimal transmission network expan

sion plan is an extremely complex problem that has not yet been satis

factorily solved. It is difficult to quantify the costs and constraints 

of a transmission network. Since the early days of digital computers, 

however, attempts have been made to solve the problem. The first 

attempts amounted to a mechanized procedure: A performance standard is 

established and whenever the system does not meet the standards new 

constructions are decided upon until the system satisfies the criterion. 

Definition of performance standards is controversial. 

In view of the extremely high investment costs of the trans

mission networks, it is believed that the use of high speed electronic 

computers in the field of system planning should be directed towards 

optimization rather than mechanization of planning procedures. It is 

common to express the power flow laws, reliability, security, and 

quality of service, as constraints. The objective is the minimization 

of the cost of the system. 

The approaches for the solution of the problem can be classified 

into two categories: static and dynamic. The static transmission 

planning problem seeks to design an optimal network which will 



accommodate the needs of a certain system at a target year without 

considering the time of construction of the network reinforcements. 

The dynamic approach seeks to determine an optimal sequence (in time) 

of network reinforcements which will prove the system sufficient to 

accommodate the dynamically growing needs of the system at every time. 

The static approach tends to exaggerate the economic impact of 

the economy of scale on the system. By economy of scale we mean the 

fact that the acquisition cost per unit capacity of an installation 

decreases as the capacity of the installation increases. 

With respect to the power flow laws, the methods can be 

divided into two categories: 

1. Those which use a transportation model. 

2. Those which use Kirchoff's laws to determine 

the power flow. 

Transportation models fail to reproduce the actual flow of power 

on the network and therefore will be excluded from this discussion. 

Available Methods 

The combined costs method [10] formulates the problem as a linear 

program through use of simulation techniques. The solution is obtained 

by iterating between simulation and the linear programming problem. 

The merit of the method is based on the fact that a similar 

model can be developed for the generation planning problem and the 

two problems can be concurrently solved. It is, however, impractical 

to incorporate reliability constraints or the effects of controls on 

the expansion of the system. 



Another method [5] defines as economic cost the following 

performance index: 

M W P 

«- J ^ ^ - W 

where: 

M - number of rights of way in the network 

W - weight factor 

P - actual power flow through the lines on the 

right of way I 

P - power transmission capability of the lines 

on right of way I 

K - cost of one unit of susceptance on the 

right of way i 

y - equivalent susceptance of the lines on 

the right of way I 

n - an externally defined integer number 

which is to be minimized subject to DC-power flow constraints 

N 
P 
i 

: 

Vi 

, = I y^ce. - e >, i = 1,2, . . . ,N 
i=i ^ D 

where: 

N - number of nodes in the network 

6. - phase angle of the voltage at node i 
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and limits on the number of lines on each right of way. 

m m max . 
yfl ^ y„ ^ y- # * = i/2<- • - • *M 

The gradient V(PI) with respect to admittance y on the rights 

of way indicates the most effective rights of way in minimizing the 

performance index. Based on this indication, combinations of discrete 

line additions are considered and the optimal will be that combination 

which yields the smallest value of the performance index. 

The overall approach is static and therefore unable to evaluate 

the economic impact of the economy of scale on the system. Another 

drawback of the method is the fact that the state of the system is 

evaluated in one single number which might prove the method highly 

deficient for certain situations. 

Another method [13] linearizes the DC load flow equations around 

the operating point in order to define the problem as a linear program. 

Minimize: 

K = 7 K Ay 
m m 

m 

subject to: 

M 3̂  
-iji <; $ + J r-5- Ay < ij> . k = 1,2, . . . ,M 
k k u. 3y Jm k 

m=l Jra 

Aym ~ qm/ m = 1/2' * ' * 'M 



where: 

K - is the cost of one unit of capacity on the 
m 

right of way m 

Ay - is the decision variable = transmission 

capacity on the right of way m 

\p - is the absolute maximum permissible phase 
JC 

angle difference on the right of way k 

The above model is the point of departure for the method in 

reference 14. 

For each right of way the optimal cost versus capacity curve 

is calculated subject to discrete line additions and space constraints 

The result is a staircase function for each right of way. 

The decision variables are X..: 
i: 

rl if line additions equal to the j 

: » % 

step of the î h right of way is made 

otherwise 

Linearizing around the operating point one can define the 

problem to be: 

Minimize: 

M n(i) 
Z = I I C n A n 

i=l j-1 ^ x3 

subject to: 



n(i) 

I X. . < 1 i = 1,2, . . . ,M 
j=l 1 3 

M n(i) 

£ 2 AiikXin " bk k = lf2' ' ' • 'P i=l j=i ^ 13 k 

where: 

M - number of rights of way considered 

n(i) - number of discrete steps in the cost-capacity 

curve of the i right of way 

p - number of overloads 

C.. - cost associated with the j step in the 
13 

cost capacity curve of the i right of way 

A. ., - W,/9y. .)Ay. . 
ljk k Ji] ^13 

Ay.. - admittance associated with the j step of 

the i right of way 

h - the amount of the k overload 
k 

A branch and bound algorithm is employed for the solution of 

the above problem. 

Each right of way is replaced with a number of decision variables 

therefore increasing the dimension of the problem. But the major 

drawbacks of this method and any other method which linearizes around 

the operating point, are as follows: 

1. There are numerous operating points of the 
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system (contingencies, generation schedules, 

load levels, etc.) which are of interest to 

the planner. Linearization around these 

points will increase the number of con

straints tremendously, and more important: 

2. The derivatives of line flows (or phase 

angle difference) relative to admittance 

increments change drastically with even 

one line removed or added to the system. 

Therefore, these derivatives cannot be 

used quantitatively in the decision

making process. 

Another method [15] uses discrete dynamic programming and a 

mathematical stochastic model of the alternative expansion plans to 

arrive at an answer which is optimal within a certain level of confidence 

A strategy S. = (a ,a , . . . ,aTT) is an ordered set of numbers 3 J. I. H 

which completely defines an expansion plan through the years 1,2,3, . 

. . ,H. The idea is to confine the optimization algorithm to a subset 

of all possible strategies, called a neighborhood. A neighborhood is 

generated randomly, the optimization is carried out and then another 

neighborhood is selected and the procedure is repeated. The process is 

stopped when a heuristic criterion is met. Specifically, the objective 

function is: 
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V w * * * 'V =" 
total accumulated present worth 
cost for given alternatives at 
stages 1 through t 

C(a ) = present worth cost of an alternative at stage t 

1 if the plan satisfies the 
performance criteria 

P. (a_*a . . . . ra.) — 
1 » otherwise 

At each stage t the forward dynamic programming is used: 

Vai Vi'V = -c(at] 

+ m a x [Vi ( a i ' • • * 'at-i )pt ( ai ' • • • 'at-i 'at ) ] 

V i e M t - i 

for a l l a e AN 

where: 

AN ~ the set of alternatives at stage t. 

The imperfections of the method are: 

1. No theory is provided for the construction of 

the neighborhoods. 

2. It fails to recognize that some rights of way 

are ineffective in reinforcing the network. 



3. The definition of the state of the system at 

a stage t does not admit the problem to an 

effective application of dynamic programming. 

In applying dynamic programming, the formulation of the problem 

is very important. In reference 16, a judicious definition of the state 

of the system is introduced and the optimization is achieved by dynamic 

programming. The state of the system coincides with given standard 

designs of the transmission network. The method is exact if the de

signs of the optimal strategy are assumed to be included in the given 

standard designs. Therefore, further work is required in order to fill 

in this gap. 

Conclusions 

The available methods are suboptimal due to either considerable 

approximations of the model or omission of important problem constraints. 

These approximations or omissions jeopardize the validity of the results. 

Furthermore, none of the methods considers the possibility of alleviating 

contingencies by on-line control action instead of construction. With 

the ever increasing applications of on-line corrective controls in power 

systems, it is imperative to evaluate the impact of such practices in 

the area of planning. 

It is apparent that a general formulation of the transmission net

work planning problem is needed. This formulation should be free of 

controversial approximations. Furthermore, it should be flexible in 

order to incorporate new practices in the area of power system operation 

such as the corrective controls. A formulation which meets the stated 

requirements is presented in the next chapter. 
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CHAPTER II 

THE GENERAL TRANSMISSION PLANNING PROBLEM 

Formulation 

The general transmission planning problem considered in this 

work can be formulated as a discrete-time deterministic optimal control 

problem. The statement of this problem is as follows: 

(i) A system described by the linear difference equation 

x(k+l) = x(k) + u(k) (I) 

where: 

x = state matrix, LxM dimensioned 

M = number of rights of way 

L = number of discrete circuit types 

u = Control matrix, LxM dimensioned 

k = Index of stage variable 

Note: The entry a.. of either matrix x or u equals the number of 

circuits type i existing on the right of way j. 

(ii) A variational performance criterion 

N-l N- l I (u(k)) 
J = I S r <• I — r - r + i t x ( k + l ) , k + l ] } ( I I ) 

k=o (1+r) X=k (1+r) 

where: 

I (u(k)) = investment cost plus interest of control u(k) 

Z (x(k+l),k+l) = operational cost 



r = interest rate (per stage) 

(iii) Constraints 

ueu(x(k) ,k+l) (III) 

xeX(x(k-l),u(k-l),k) (IV) 

where: 

u(x(k),k+l) = set of admissible controls at 

state x, stage k. 

X(x(k-1),u(k-l),k) = set of admissible states at 

stage k. 

Notes; 1. The determination of the set of admissible controls 

at state x, stage k+1, u(x(k),k+l), is a difficult 

problem by itself and it is presented in another 

chapter under the name "Automatic Generation of 

Alternatives." 

2. The set of admissible states at stage k, X(x(k-1), 

u(k-l,k), can be generated in a straightforward 

manner from the set of admissible controls at 

state x, stage k-1, by using equation (I). 

(iv) An initial state 

x(0) = c (V) 

Find; 

The control sequence u(0),u(l), . „ . ,u(N-l) such that J in 

equation (II) is minimized, subject to the system equation (I) the 



constraint equations (III) and (IV) and the initial condition (V). 

The defined problem with the relations I through V is the 

general statement of the long range transmission network planning. 

Because of its generality, many important aspects of the problem are 

hidden. For example, the actual constraints which determine the ad

missibility of a control are not explicitly spelled out. Therefore, 

it is expedient to undertake a thorough explanation of the presented 

formulae. The following sections are devoted to this task. 

The State of the System 

The system matrix is defined as follows: The entry x.. of the 

matrix x(k) equals the number of circuits type i (l<i<L) existing on 

the right of way j (l^j^M) during stage k. 

The number of discrete circuit types for a typical transmission 

network is very small. The Georgia Power Company transmission network 

consists of three discrete types of circuits: (1) 115 kV, (2) 230 kV, 

and (3) 500 kV. For this network L = 3. 

The system matrix provides information about the transmission 

facilities existing in the system and their topology. The expression 

"Base case configuration of the network" denotes the same information. 

The Controls 

The control matrix u is dimensionally identical to the state 

matrix x and it is defined in a similar way: The entry u.. of the 

matrix u(k) equals the number of circuits type i (l^i^L) to be con

structed on the right of way j (l^j<M) during stage k (0<k<N-l). 

In practice the number of circuits under construction at a 

particular stage is very small. This means that the matrix u is 
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highly sparse. 

The controls (decisions to reinforce the transmission network) 

are assumed to be applied at discrete time intervals, i.e. at the 

beginning of a stage. This is quite desirable indeed in long-range 

planning of a transmission network because the aim of the decision 

maker is to make in advance relatively large investments to compensate 

for long range demand trends. Optimal real time adjustments are not 

the objective of long range planning. On the other hand, electric 

power demand exhibits daily, weekly, monthly, seasonal, and annual 

peaks. In most instances, the annual peak is considerably higher than 

the other peaks and most importantly it occurs in the same period of 

the year for example, July-August. If reinforcements of the network 

are necessary, they should be implemented and ready to operate before 

this period of the year. Therefore, it is realistic to assume that 

the length of a stage equals one year. Furthermore, the control u(k) 

is assumed to denote the transmission facilities which are ready to 

operate at the beginning of year k+1 (stage k+1). If the transmission 

facilities described by the control matrix u(k) require T time to be 

constructed (T = construction lead time) then the decision for 

implementing the control u(k) should be taken at time 

t = k+l-T (1) 

Of course if t<0, then the control u(k) is inadmissible since it is not 

conceivable to make a decision prior to the present time. Equation (1) 



allows for fractional construction lead times. 

The above discussion of the construction lead times is a simpli

fication because the control u(k) may involve the construction of 

different transmission facilities with different construction lead 

times. The purpose of the discussion was to make clear that the present 

formulation allows for construction lead times. However, the objective 

of this long-range planning is not to analyze the decisions in real-time 

but rather to determine when more transmission facilities are needed, 

where should they be located and what should they be. 

Performance Criterion 

The performance of the system can be measured with the following 

variational performance criterion: 

N-l N-l I (u(k)) 
J = I r { I — 5H7+ A (x(k+l),k+l)} (ID 

k=o (1+r) X=k (1+rr K d 

In practice the above expression represents the "economic cost" 

of expanding and operating the transmission network throughout the plan

ning period. It is necessary to point out that the "economic cost" can 

not be universally defined. The term "economic cost" means different 

things to different companies and it is rather dependent on the economic 

environment in which the activities of a particular company are placed. 

In long-range planning the level of investment itself is not of 

primary interest but rather the overall cost of the system in a rela

tively remote future time. The problem becomes complex because of the 

economy of scale resulting from relatively large investments. Further

more, an investment made now might have an economic impact on the system 



for a period longer than the planning period. It is imperative, there

fore, to define a performance criterion which automatically satisfies 

all these requirements. 

The performance is defined to be the sum of the investment costs 

and the operational cost both of them converted into present value. 

Investment Cost. As it has been mentioned an investment made 

during the planning period might have economic effects on the system 

beyond the end of the planning period. This is always the case. A 

transmission line has an expected economic life of over 40 years while 

we are interested in planning periods 10 to 30 years. 

To avoid problems of this nature, we make the following assump

tion: Suppose there is an infinite source of capital. We can borrow 

money from this source at any desired amount but in return we have to 

pay back the capital plus interest at an annual rate r. The first 

payment is due the year of the energization of the equipment and the 

rest of them one per annum for as many years as the expected economic 

life of the equipment is. All payments are equal. 

The described assumption yields the following calculations. Let 

the implementation of a decision call for investing A. at time x., 

i = 1,2, . . . ,n. Further, energization of the equipment takes place 

in year k. Assume N is the expected economic life of the equipment. 
E 

Then payments of level C are due at years I, I = k,k+l, . . . ,k+N -1. 
hi 

Of course the present worth value of the investment and the payments 

should be equal. 



n A. ""V 1 „ 
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1 = 1 (l +r)
X i *=* ( 1 + r )" 

and 

n A. 

I — 
= 1-1 d+r)

XJ_ 
k+N -1 (2) 

E i 

I - H r 
fc=k (1+r) 

Note that x. need not be an integer. 

In our case it is pertinent to consider the decisions consistent 

from the following unit: Construct in year k a transmission line of 

type j on the right of way m. Then the amount C can be dependent on 

the indices k, j, and m. 

C = C(k,j,m) (3) 

The above model of the costs is very general and it can account 

for escalation of cost. This is so because of the index k: the same 

type of transmission line, j, on the same right of way, m, costs 

different if constructed at different times. 

Note that investments are not limited in occuring in intervals of 

integer number of years. Only payments have to be made in intervals of 

integer number of years. 



2 A 

The above cost model is very flexible to incorporate trends and 

policies of particular companies. For example, if the retrieval of 

the invested amount of money is desired in a short period of time, then 

a shorter expected life in the computation of C(k,j,m) will reflect this 

policy. Or, if the money market is tight, then a higher interest rate 

will be appropriate. In any case, the computation of C(k,j,m) is a 

task to be defined by the administration of the particular company. 

Assuming the values C(k,j,m) are given, the function I (u(k)) is 

of the following simple form. 

M L 
I (u(k)) = 1 1 C(k,j,m) • u (4) 

m=l j=l D 

The above cost model automatically accounts for salvage values 

of the equipment at the end of the planning period. The proof follows. 

Assume that energization of a transmission line, type j, on the 

right of way m, occurred, in year k. Further assume that N is the 

number of years in the planning period. The cost of this transmission 

line over the planning period is: 

Cost= I ^ L d ^ J . (5) 

Z=k (1+r) 

On the other hand, the salvage value of this line at the end of the 

planning period is 



k+NE-l 

Salvage value = J C ( k ^ / ^ (6) 
£=N+1 (1+r) 

Now the cost can be rewritten 

N
 k + N

E
_ 1 k + N

E"
1 

Cost = T C(k'3'm> = V C(k,j,m) _ V C(k,j,m) 
JL=k (1+r)31 £=k (1+r)* £=N+1 (1+r)* 

k+N -1 k+N -1 
7 C(k,j,m) r C(k,j,m) # 1_ 
A ,, . v^ „ .4., ,, t A-N-l ' ... . £=k (l+r)~ £=N+1 (l+r)~ " * (l+r) N + 1 

It is easy to recognize the terms: 

k+N -1 is the salvage value at the end 

V C(k,jym) 

£=N+L (l+r)*"^'1 o f t h e P l a n n i n9 period. 

k+N -1 is the total investment cost 
L y C(k,j,m) 

xI referred at the start of the 
£=k (1+r) 

planning period. 

Therefore, 

Cost = Present worth value of total investment minus salvage 

value at the end of the planning period. 

Operational Costs. Operational costs mainly stem from losses on the 

transmission network. 
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Let us discuss the general nature of the losses on the trans

mission network. At every instant t, the energy balance equation 

holds 

P = P T + PT (7) 
Gen Load Loss 

The load P , is an exogenous variable. The losses PT , however, are 
Load Loss 

functionally dependent on the network and the generation schedule. At 

every instant t, they have to be satisfied. In other words, in an 

interval At, the losses P call for the following: (1) An amount 
Loss 

of energy equal P • At has to be generated. (2) In the interval 
Loss 

t, t + At, we need to have generation excess with respect to the demand 

P„ , equal to P . This fact should be considered irrespectively 
Load ^ Loss * J 

from reserve requirements. 

The above considerations make clear that operational cost can be 

split into two categories: (1) cost of energy losses (heat dissipation 

on the circuits), and (2) cost of installed generating capacity to 

compensate losses on the network. 

These costs are directly associated with the transmission network. 

Cost of Energy Losses. Energy losses in year k can be computed 

from the following integral 

Elnf^irS - t T ( l rt*.t,ltVt,at 
* t=(k-l)T £=1 

where rp(k,t) is the equivalent resistance of the circuits on the right 
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of way I, and I (k,t) is the total current flowing through the circuits 

on the right of way £. 

In reality r (k,t) is not constant throughout the stage k due 

mainly to outages and switching practices. Other reasons are construc

tion of new circuits. Considering, however, our assumption that energi

zation of new equipment takes place at the end or the beginning of a 

stage, we conclude that r (k,t) is not affected by construction of new 
A* 

circuits within a stage. Also, outages last for a very short time and 

switching is applied only in special cases. Therefore, the equivalent 

resistance r (k,t) of the circuits on the right of way Z is constant 

during stage k except for a small fraction of the duration of the stage. 

Therefore, we can write: 

r£(k,t) = r£(k) (9) 

The above equation can be stated in another way: For purposes of com

puting the energy losses on a transmission network, the network configu

ration can be considered invariant throughout the duration of a stage. 

The total current, I (k,t), through the circuits on the right of 

way I, is in reality a random process, which is in a functional 

relationship with three other random processes: (a) network configura

tion, x(k); (b) power demand, P (k,t); and (c) generation schedule, 
Li 

PG(k,t). 

The network configuration can be considered constant during a 

stage for the same reasons the equivalent resistance r (k,t) is considered 
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constant during a stage. We can write 

I (k,t) = f£(x(k),PL(k,t),PG(k,t)) (10) 

In theory, by knowing the statistics of the vector random 

processes P (k,t) and P (k,t) and the functional f0 , it is possible to 
L G Jo 

determine the statistics of Ip(k,t). 

However, our approach is deterministic because of the fact that 

the main random process P (k,t) can be predicted with great accuracy for 
Li 

a period of few future years. Therefore, 

I£(k,t) = f£(x(k),PL(k,t) ,PG(k,t)) (11) 

where an upper bar means expected value. 

The integral (8) is then computed by simulating the operation of 

the system throughout the stage k and using the functional relationship 

(11). 

It is, however, expedient to make use of the coefficients of 

losses defined as follows. 

kT 
/ r (k) • Ip(k,t)dt 

• » * » - w > ; l 2 — 
(lPealC(k))2 • T 

where 1^ (k) is the current on the circuits of the right of way I 
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during peak hour in year k. 

The coefficients of losses are rather insensitive to small 

variations of the network configuration. This fact can be proven very 

important from the computational point of view. 

In terms of the coefficients of losses, the total losses on the 

network during stage k are: 

EnZZgTT -T*™ I ^ • **« • ^ w ) 2 <»> 

where p(k) is the price of one unit of energy during stage k. The price 

p(k) of one unit of energy is considered, constant throughout the duration 

of the stage, but it may differ from stage to stage due to escalation 

of fuel costs. 

Cost of Installed Generating Capacity to Compensate Losses on 

the Network. This component of the cost stems from the fact that when 

there are losses on the system, the generating plants have not only to 

produce the energy losses but also to have adequate generating capacity 

in order not to curtail any revenue creating load. To clarify this 

point, recall the equation 

p^ = PT * + P (7) 
Gen Load Loss 

We can rewrite this equation in the following form 

GA Load Loss 
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where P = total generating capacity of the system, and R = reserve 

generating capacity. 

Of course the reliability [28] of the system is a function of 

R: 

Reliability - f(R) - (|Pffl - P L o a a - PLoss> (15) 

In this approach P and P are considered to be deterministically 

known. In any event, they are independent of the state of the trans

mission network. On the contrary, the variable P ^ is dependent on 

the state of the transmission network. Therefore 

Reliability = f(R) = f' (P ) = f"(x(k)) 
Loss 

It is trivial to assess [29] that the function f(R) is monotoni

cally increasing and therefore the function f' is monotonically decreas

ing. In other words, a lossy system is less reliable than a less lossy 

system with the same generating capacity and topology. 

The question at hand is what is the cost of losing reliability 

because of the losses. From equation (14) it is obvious that in order 

to maintain a specified generation reserve R over the demand P ,, we 
Load 

need extra generating capacity of P MW. Therefore, it is expedient 
LOSS 

to consider as cost the annual investment cost plus interest of 

installing generating capacity equal to P . This is rather a 
LOSS 

simplification since one can install generating capacity only in big 
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chunks but it is rather acceptable as a reliability penalty. 

Let g be the annual investment cost plus interest to install one 

unit of generating capacity. It is computed in exactly the same way as 

C(k,j,m) and it is considered constant for simplicity. Then the cost 

of installed generating capacity to compensate losses on the network is 

3 p L o S s = ' - t U w ( i r « ) 2 ( i 6> 

The above formula is based on the realistic assumption that the maximum 

losses on the system occur during peak load condition. In summary, the 

operational cost of the transmission network at stage k is 

%2 (x (k) ,k) = p(k)T J ez (k) r£ (k) (lP
eak (k)) 2 + g I r (Je) (I^eak (k)) 2 (17) 

Constraints 

The constraints are expressed with the relationship (III) and 

(IV) which are cited again 

ueu(x(k) ,k+l) (III) 

xeX(x(k-1),u(k-1),k) (IV) 

where u(x(k),k+l) is the set of admissible controls at state x, stage 

k+1, and X(x(k-1),u(k-l),k) is the set of admissible states at stage k. 

It is appropriate in this point to clarify the following: 



A. The set of admissible controls, u(x(k),k+l), at state x(k), 

stage k+1 is conditional, the condition being that at stage k the state 

of the system is x(k). This condition has a tremendous impact on the 

size of the set u(x(k),k+l). This problem is investigated in Chapters 

III and V. 

B. The set of admissible states, X(x(k-l),u(k-l),k) at stage k, 

is conditional too. The condition being that the state of the system at 

stage k-1 is x(k-l). Same comments, as in A, can be applied about the 

size of the set X. 

C. We need to define admissibility of a state only, since the 

equation of motion (I) is invertible, i.e. given the states of the 

system in stages k, and k+1, the control u(k) is completely defined. 

Admissibility of a control u(k) is then defined in terms of admissibility 

of a state: The control u(k) is admissible if and only if the state of 

the system x(k+l) = x(k) + u(k) is admissible. The state x(k) is 

assumed to be admissible. 

D. Given the set of admissible controls u(x(k),k+l), the set 

X(x(k),u(k),k+l) is uniquely determined. 

From the above discussion, it is obvious that we are confronted 

with two problems. 

1. We need a rational definition of an admissible 

state x(k), in stage k. 

2. We need to determine the set of admissible 

controls u(x(k),k+l). 
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Problem (2) is very important and it is thoroughly analyzed in Chapter 

III. 

Regarding problem (1), it should be noted that a lot of confusion 

exists in what is an acceptable transmission network. This is rather 

justified because the operation of a transmission network is very com

plex. The fact that a transmission network is subject to random events 

such as faults on equipment, or abrupt change of generating output/or 

load create transient phenomena which might lead to transmission line 

outages. Furthermore, operating practices and assisting media have 

evolved and are still evolving through research and today operating 

and controlling a transmission network is a rather sophisticated and 

complex task. 

In the following, operational considerations will be taken into 

account in order to define admissibility in a rational way. In particu

lar, two different definitions of an admissible state will be given. 

Both definitions are rather rational because they consider events with 

appreciable probability only according to the recommendations of the 

Federal Power Commission. The first definition does not take into 

account the possibility of alleviating contingencies by on-line control 

action while the second one does. 

It should be clear that the formulation of the problem is not 

dependent on the definition of an admissible state. In any case the 

operating department of the particular company can specify what is 

acceptable and what is not. 

Before the admissibility of a state is defined, it is expedient 

to discuss the power flow model for the transmission network. 



Power Flow Model. The flow of power on a transmission network 

is an electromagnetic phenomenon which is commonly described by the 

Kirchhoff's laws. These laws lead to the so-called AC-load flow 

equations which are non-linear and their solution requires an iterative 

scheme. In a planning study a simplified model is desirable because of 

the computational size of the overall problem. This is the so-called 

DC-load flow model which is derived in reference 13. 

The simplified model is a reasonable approximation to the complete 

AC-load flow equations based on the following assumptions: 

1. The voltages are assumed to be constant at 

any node due to the action of perfect regu

lators at each node. 

2. The reactive part of a circuit's impedance 

is much higher than the active part. 

3. The voltage phase angle difference across 

a circuit is relatively small. 

The above assumptions are very close to reality for most 

transmission systems. 

The DC model of a transmission line is illustrated in Figure 

II.1. The flow of power in a circuit with impedance z and voltages 

ej61 ejG2 
V1 , V at the terminals is given by 

p i2 = y i 2 ( e r e 2 ) (18) 
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where: 

*12 " -T-2 (19) 

r +x 

The quantity y is called the transmission "capacity" of the circuit 

1,2. If similar equations are written for all circuits in the network, 

we obtain, in matrix form, 

Y(k)9(k) = Pfc(k) (20) 

where: 

Y is the matrix of the transmission "capacities" y.. 

0 is the vector of voltage phase angles, and 

P, is the vector of generation minus load at each node. 
b 

More details for the DC model can be found in the references [13] and 

[21]. 

All developments in this thesis have been based on the DC power 

flow model. However, it will be shown that the exact AC power flow 

model can be used (Chapter VI) without major modifications. The penalty 

for using the accurate AC-model will be longer execution time. 

Loading Capabilities of Transmission Lines. The loading 

capability of a transmission line is determined by either thermal 

limitations of the conductor materials or stability considerations. 

The limits as they are dictated by the above two reasons, should be 

calculated and the minimum will be the loading capability of the line. 



In a practical system thermal limitations determine loading capability 

of short lines and stability determines loading limits for long lines. 

The borders between short and long lines depend on the system's layout. 

Short Lines. For each conductor material there is a temperature 

limit above which the material loses its mechanical strength. By 

adopting a safety factor, the safe temperature limit is readily deter

mined. The current carrying capability of the conductor is defined as 

the maximum current through the conductor which will not cause the 

temperature of the conductor to raise above the limit. The current 

carrying capability can be translated into power carrying capability. 

Finally, the power carrying capability can be translated into maximum 

permissible phase angle difference across the line. 

Long Lines. For long lines, the stability of the system is the 

main factor for determining loading capability. Therefore, a stability 

study should determine the maximum permissible load on a long line. But 

this would be computationally infeasible for planning studies. 

An approximate stability constraint [13] is defined as follows: 

k t l < * £ 

is the actual phase angle difference across the trans

mission line %, and 

is the maximum permissible phase angle difference across 

the transmission line £. 

where: 

I 

h 



3£ 

In summary, the loading limit of a transmission line can be 

expressed with the maximum permissible phase angle difference across 

the line. 

9. - 6. < i|>. . (21) 
1 :' - 13 

The maximum permissible phase angle difference ip.. across the line i,j 

is a function of the length of the line as it is illustrated in Figure 

II.1. 

The Power Injections. The loading level of the transmission 

lines in a network depends on the power injections at the nodes of the 

network. It is expected that the power injections play an important 

role in the planning of transmission networks. Therefore, a discussion 

on this subject is pertinent. 

Each node of a transmission network can be classified into three 

categories: (1) nodes connected to a generating plant, (2) nodes con

nected to a load or to the subtransmission system, and (3) nodes 

connected to a generating plant and a load or the subtransmissicn 

system. 

In any case, if P . is the output of the generation plant [P .=0 

if the node is in category 2] and P . is the load or the power injected 

to the subtransmission system, then the power injected to the node i is 

P. = P„. - P„. 
1 Gi Li 



The power injections P., i=l, . . . ,n constitute the vector of injec

tions P. If P„ is the vector of generated power at the nodes of the 

G 

network, and P is the vector of the loads at the nodes of the network, 
L 

then 

P = P. - PT (22) 

P is basically a random vector. Econometric or forecasting 
L 

models [35], [36] can predict the statistics of the vector P . The 
L 

level of confidence in these models is high for short periods of time 

in the future. Furthermore, most of these models yield the expected 

value of the vector P and its standard deviation. 
L 

The standard deviation is an increasing function of time. The 
important fact is that for several years it is very, very small. This 

means that the load vector P can be predicted with high level of 
L 

confidence. This is one reason to formulate the problem of planning 

a transmission network as a deterministic optimization one. In this 

thesis the load vector P is assumed to be an exogenous deterministic 
L 

variable equal to the expected value of the random process P . 
L 

The vector P_ is also random but in a slightly different way. 
Kj 

Forced outages of generating units may occur any time. It is common 

practice to determine the vector P_ by economically dispatching the 
VJ 

electric power demand among the available generating units. Therefore, 

if the available units are known, the vector PG can be accurately 

determined for a given load level. If forced outages with appreciable 

probability are only to be considered, then for a given load level 
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there will be as many discrete generation schedules P as the forced 

outages are. 

(v) v = 1,2, . . . ,y 

where: 

(v) 
is the generation schedule as determined by the 

economic dispatcher for the given load level and 

th 
the v forced outage. 

is the number of forced outages whose probability 

to occur is not negligible. 

The generation schedule, when all units are available, is denoted by 

P(0) 

The vector of power injections P for a given load level will be 

P(V) - P ™ - P L , V - 0.1,2, 

The conclusion is that the vector of power injections which is a 

random process can be substituted by a small set of vector values for 

planning purposes. It is then necessary to determine the set of 

vectors which will put maximum stress on the transmission network over 

a given period of time. The time period should be one year because it 

has been assumed that additions of new facilities can occur only in the 

beginning or ending of a stage (year). For this purpose, it is assumed 

that the maximum stress on the transmission network will occur during 



the peak hour demand for the year under consideration. Then, the 

vectors of power injections will be 

P(v)(k) = P*V) (k) -P T(k), v = 0,1, . . . ,y (23) 

where P (k) is the vector of electric power demand during peak hour at 
L 

stage k, and \i is the number of unit outages with appreciable probability 

to occur during peak hour. 

In conclusion, the determination of the vector(s) of power in

jections to be considered for planning purposes takes engineering 

judgement and experience with the particular system. The formulation 

of the overall problem is very flexible in accepting any defined vector 

of power injections. 

In the definitions of an admissible state only one vector of 

power injections is considered, namely P (k). 

The Generation Schedule. In this section a simplified procedure 

will be presented which determines the generation schedule given the 

load level and the available generating units. 

We consider a time interval during which loads remain constant. 

We assume we know the set of the available thermal generating units, and 

the values of the real power outputs of the hydroelectric and nuclear 

units if any. 

The lossless case of economic dispatch with quadratic cost 

functions is considered. Furthermore, since in a planning study it is 

not known a priori which units are on-line, it is necessary to couple the 



economic dispatch problem with the unit commitment problem. The 

statement of the combined problem is: 

Minimize 

subject to: 

" j j W (24) 

f. (P.) = a. + b.P. + C.PT 
3 3 3 3 3 3 3 

(25) 

min . _ . J^ax 
P. < P . 5 P . or P. = 0 
3 3 ~ 3 J 

(26) 

\ D L 
(27) 

a c + a c > 
11 22 

(28) 

where j = 1,2, . . . ,n are the available generation plants; P. is the 

actual real power output of plant j; a.,b.,c. are constants; and P is 
D D I) L 

the total real power demand (a scalar). 

Inequality (28) is a simplified constraint for the spinning 

reserve requirements and it is derived from the following observations: 

1. A generation plant which is on-line can respond 

"immediately" at a demand within certain limits. The limits depend on the 
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output of the unit. In an emergency, for example, if a unit shuts down, 

the running units will be able to provide power 

C. = I r. (P.) (29) 
1 h I I 

where i is a running unit, and r. (P.) is the response limit which 

depends on the output P.. If the spinning reserve C_ is adequate to 

accommodate the load, even if any unit shuts down, we shall say we have 

a "secure global spinning reserve." 

2. Fast start units (gas turbines, hydro) can be brought on-line 

in a short notice (10 to 15 minutes). Therefore, if there are enough 

fast start units, it is possible to synchronize them in a short time 

to compensate generation deficiency (loss of a unit, unexpected load 

increase). If P. is the capacity of the j fast start unit, then 

r max . 
C = l P. is the spinning reserve capacity of fast start units. 

j 3 

3. Conventional thermal units have long lead times to start, 

synchronize and carry load. This lead time can be reduced by main

taining the boiler in a banked state. Units in this condition are 

designated as hot reserve. Hot reserve can carry load in a notice of 

one hour approximately. Because of this long delay time, hot reserve 

is not considered in this simplified model of spinning reserve. 

4. The risk level of finding the system short in generation is 

a function of the time delay of the spinning reserve capacity. [25-28] 

It can be approximated as a linear combination of the spinning reserve 

capacities C and C . 
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Risk level = a'C + a'C 

where a' < a' since the spinning reserve capacity C has shorter delay 

time than C . Then, if we are given a tolerable risk, the spinning 

reserve requirement will be 

a'C + a'C < Specified Tolerable Risk (S.T.R.) 

Let a' = 1-a / and a' = 1-a . The constraint on the risk level will 

become 

where 

aiCl + a2C2 " 3 (28) 

a > a 
1 2 

C + C - (S.T.R.) = a constant 

Inequality (28) is an approximate spinning reserve constraint. 

The problem defined by (24), (25), (26), (27), and (28) can 

provide the expected generation schedule given the available generating 

plants and the load level. This problem, however, is a mixed optimiza

tion one and an exact solution will be tedious. A suboptimal method 

has been developed for the solution of the above problem. It is 



presented in Appendix C. 

Security/Reliability Constraints. To check a given state x(k) of 

the system at stage k, with regard to reliability of operation, a series 

of outage tests must be conducted and compared against some reliability 

criterion. For each of these tests, a certain combination of lines is 

temporarily removed from the system, and the phase angles are computed 

using the DC-load flow equations. The removed lines are restored before 

the procedure steps to the next test. 

In this thesis only single outages are considered in which case 

the reliability criterion can be stated as: if one line, possibly the 

highest capacity line, is subjected to an outage, no other lines shall 

be overloaded resulting in their loss at any time of the year, including 

peak periods. 

Therefore, to check a configuration, P outage tests must be 

conducted, where P is the number of lines in the configuration under 

consideration. In most instances, however, it is only necessary to 

conduct M single outages where M is the number of rights of way with 

circuits. Specifically, for each outage test the highest capacity 

line on the right of way m is removed and the DC-load flow equations 

are solved. 

y ( m )(x(k)) • e ( m ) = P ( V ) O O oo) 

The r e s t of the l ines are checked for overloads 

k ( m ) | _ | e W _ e t a > | < ^ ( x ( k ) , m ) ( 3 1 ) 

£ = 1 , 2 , . . . ,M 
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The removed line is restored before the procedure steps to the next 

test. The procedure stops when: 

1. At least one of the inequalities (31) is 

violated. In this case the configuration 

x(k) is classified as inadmissible at 

stage k. 

2. When all rights of way have been considered. 

In this case the state x(k) is classified 

as secure and reliable at stage k. 

In summary, the security/reliability constraints can be expressed as 

follows: 

Y<m> (*(*)> • 6 ( m ) = P ( V > 0 0 (30) 

> f M = | e f - e w | s ^ u o o . a ) (3D 

V = 0 , 1 , 2 , . . . ,y 

m = 1 , 2 , . . . ,M 

£ = 1 , 2 , . . . ,M 

where Y (x(k)) is the "capacity" matrix of the configuration x(k) 

when the highest capacity line from the right of way m is removed; 

(v) 
P (k) is the vector of peak injections during stage k, unit outage 

v; ij> (x(k),m) is the maximum permissible phase angle difference across 
XJ 



the circuits on the right of way I for the configuration x(k) with the 

stated outage; and 6 is the vector of the voltage phases for the 

above condition. 

Definition of an Admissible State I. A state x(k) of the trans

mission network is said to be admissible if and only if it satisfies 

the following set of relationships. 

Y ( m ) (x (k) ) • 6 ( m ) = P ( 0 ) (k) = P <°> (k) - PT (k) (32) 
VJ Li 

l^ m ) | - l e f - 6<m)| <^(x(k),m) (31) 

w h e r e : 

m = 0 , 1 , 2 , . . . ,M 

I = 1 , 2 , . . . ,M 

P (k) is determined by a generation scheduling algorithm for peak 

load conditions at stage k and all units available; P (k) is the vector 
L 

of the peak load at stage k; Y m (x(k)) is the "capacity" matrix of the 

system when the highest capacity line from the right of way m is 

removed, when m=0, no line is removed; and i|; (x(k) ,m) is the maximum 

permissible phase angle difference across the right of way I when the 

highest capacity line from the right of way m is removed. 

Operational Controls 

It has been mentioned that operating practices and assisting 

media have evolved and are still evolving. Power companies install 



control centers which are capable to predict vulnerable situations and 

take corrective action. Control centers improve the security and re

liability of a given power system. In this case the security/reliability 

constraints [31] and [32] are very strict and will lead to a very 

conservative expansion plan for the transmission network. It is ap

parent that the operations performed by control centers will have an 

impact on planning practices. 

Operational controls related to transmission networks can be of 

the following type: 

(a) Changes in scheduled power output of some 

of the power plants. 

(b) Changes in the scheduled exchange of power 

with the neighboring systems. 

(c) Prearranged curtailment of some interruptible 

loads. 

(d) Changes in the network configuration 

(switching). 

(e) Changes in control logic and protection 

philosophy. 

In the following discussion only the first type of operational 

control is considered. In the literature it is referred to as corrective 

rescheduling or security dispatch. The basic idea is depicted in Figure 

II.2. 

A state is secure if the postfault state of the system is normal 

in the sense that no constraints are violated. Otherwise, the state of 
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EMERGENCY 

(Some constraints 
violated) 
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violated) 

CASE 2: Corrective Actions Required to Bring 
a Normal but Vulnerable System into 
a Secure Operating State. 

Figure II.2. Application of Corrective Controls 
in Power Systems. 



the system is vulnerable and corrective action is required to make this 

state secure. 

From the operational point of view there exist a state of opera

tion and there are several outages which have a probability to occur in 

the next hour or so. Assuming that an outage did occur and that the 

postfault state of the system does not satisfy the constraints, the 

question is: Can a new schedule of the generation be found with the 

least deviation from the present one and such that the state of the 

system will be normal under any of the above outages. 

For planning purposes the problem can be simplified. The 

question is whether the system will be able to operate at a normal state 

(no constraint violations) under any postulated outages and any load 

level including peak level. Since a transmission line can withstand 

a small overload for a short period of time (the thermal time lag of a 

transmission line is about 15 minutes), the philosophy of approach may 

differ to the effect that instead of taking preventive action, it is 

possible to let the emergency state occur first and then take action. 

This is justifiable since the permissible limits for line currents are 

greater just after a trip than for a steady state. On the other hand, 

to reach a new normal steady state, 15 minutes are at our disposal, and 

we may change the generator outputs during this interval. The application 

of corrective rescheduling for planning purposes is depicted in Figure 

II.3. 

"Soft" and "Hard" Constraints 

It has been mentioned that the permissible limits for line 

currents are greater just after a trip than for a steady state. For 
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CASE 2: Corrective Rescheduling is Necessary to 
Bring the System From the Emergency State 
into a Normal One. 

Figure II.3. Corrective Rescheduling Philosophy 
for Planning Purposes. 



the DC-model we can state that the maximum permissible phase angle 

difference across a line is greater just after a trip than for a steady 

state. Therefore, there exist two discrete constraints: one for steady 

state which is called "soft" constraint, and one for states 10-15 

minutes after a trip which we shall call "hard" constraints. The 

period 10-15 minutes corresponds to the thermal time lag of transmission 

lines. 

Ul < if 
m - y steady state (33) 

kl 1. M after a trip (34) 

where x has a value greater than one. There is an upper bound on the 

value of x which is determined by the settings of the protective 

devices. 

Corrective Rescheduling 

The application of corrective rescheduling in the planning 

algorithm is depicted in Figure II.3. 

Specifically, the system is considered operating in a normal 

state (no "soft" constraints violated) and with the base case configura

tion. The vector of power injections is assumed known. The load is 

constant. The discussion will be confined to line outages only but a 

generalization to include generating unit outages will be obvious. 

The prefault state of the system satisfies the following 

relations 
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Y(0) (x(k)) • 0(O) = P = P - PT 

|*J = |ei - e | <_*A(x<ic),o)f i = 1,2, . . . ,M 

Now assume the highest capacity line of the right of way m is removed, 

The DC-load flow equations will be 

y(m)(K(k)) • e(m) - P . - P T 
Va Li 

Consider the constraints 

and 

l ^ ' l = |6 |m» - e ! m ) | < . iT t u(k) ,») , i = 1,2 M o n 

^ m ) | - l e f ' - eD
to) | < ^ ( x w , » ) , i = 1,2 M (35) 

If some of the constraints (35) are violated, we shall say the 

state x(k) is not admissible. If constraints (31) are satisfied, the 

state x(k) is secure during outage m. If some of the constraints (31) 

are violated while the constraints (35) are satisfied, the system is in 

an emergency state. In this case, a short period of time is at our 

disposal to reschedule the generation in such a way that the new steady 

state is normal. 

The statement of the corrective rescheduling is: Given the power 



flow equations during an outage m 

Y(m)(x(k)) • G ( m ) = Pr - Py (32) 
G J_i 

the "soft" cons t ra in t s , 

# t » > | . | e |m) _ ta)| £ ^ ( x ( k ) f m ) / l . l f 2 M ( 3 1 ) 

with some of them violated while the "hard" constraints, 

l*lm)| - |6| m )-6< m )| <x h^( X(k),m) (35) 

are satisfied. The limits of the real power outputs P_ of the generation 
G 

plants 

^mm . ^ .̂ ^max ,„,.. 
PG " PG " PG (26) 

determine a feasible change of the generation schedule AP such that the 
G 

new steady state, described by 

Y ( m ) (x(k))6- (m) = PG + APG - P L (36) 

satisfies the "soft" constraints 

l*i(m>l - |e!(m> - 6'(m)| < • (x(k>,m), 1 - 1,2 M (37) 
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The objective will be to have minimal cost deviation, 

The vector AP . should satisfy the equation 

V Gi = 0 
(38) 

since the load remains constant. 

The stated problem can be simplified by linearizing around the 

operating point. This is justified since the changes AP are very small, 
Gi 

The phase angle difference across the right of way I, ty , is a 

function of the vector P„ 

(m) 
I *r# = +r(Pr) 

(m) 

For small deviations AP , we obtain 
G 

« S- 3P 
) AP + higher order terms 

where 

< 'V 
9P_ 



By neglecting the higher order terms and assuming quadratic cost func

tions of the generating units, the problem can be stated as follows: 

Minimize the cost deviation 

AC = B T • AP̂ , + (APJT C AP_ (39) 
G G G 

subject to 

(ml V ^ V T 
l*£ + (—*gp — > APG| £*£<x(k),m), £ = 1,2, . . . ,M (40) 

I APGi = 0 (38) 
i 

AP . < AP„ < AP (41) 
m m — G — max 

where B is a constant vector with B. = b. + 2c.P . and C is a constant 
1 l l Gl 

diagonal matrix with C.. = c., and b., c., are the coefficients of the 
' n I 1 1 

quadratic cost function of plant i. 

The above problem can be reduced to a standard quadratic program

ming problem with linear constraints. However, a quadratic solution of 

a large problem as the above will be time consuming for a planning 

algorithm. For this reason, a fast but suboptimal algorithm has been 

developed. It is presented in Appendix A. 

Once a solution to the corrective rescheduling problem has been 

found, the removed line is restored and the procedure steps to the next 

outage. 



Definition of an Admissible State II. A state x(k), at stage k, 

is said to be admissible if: 

(a) it satisfies the "soft" constraints with the base case 

configuration 

Y(0,(x(k))e
(0)

 = P < 0 ) O O 

l O - lef -e<0)|iV*(k>,o) 

(b) it satisfies the "hard" constraints during an outage m, 

1,2, . . . ,M 

Ytm)(x(k))e(m) =P(0)(k) 

'•fl = |e<m) - e ] m ) | <xh^(x(k),m) 

(c) For the outage n, a = 1,2, . . . ,M, it is possible, if 

necessary, to find a change AP to the generation schedule which is 

feasible and which will make the system to satisfy the "soft" constraints, 

Y(m)(xOO)6(m) = P(0>(k> + &P 

,tto)| = | f lW _ Cm) | < ̂ u(k)rB)/ m . lf2 M 



The External System 

In almost every case the transmission network under study is 

interconnected with neighboring system for the purpose of assisting 

each other. The interconnections influence the flow of power in the 

system under consideration. It is, therefore, necessary to have an 

equivalent representation of the external systems which will accurately 

reproduce the power flows in the internal system. 

Many steady state equivalencing techniques have been developed. 

An excellent review is presented in reference 37. In the same paper the 

equivalent model of the external systems is obtained with an optimiza

tion technique whereby the best equivalent representation is generated 

given the available information about the external systems. This is 

mostly desirable for planning purposes. 

Let us assume that at stage k the equivalent model of the 

external system is known as well as the state x(k) of the system under 

study. The external system is taken into account if the equivalent 

model is used in the construction of the system's matrix. This is 

depicted in Figure II.4. 

Inclusion of the equivalent representation of the external system 

in a planning study gives realistic results while keeping the size of 

the system under study small. 
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Figure II.4. Inclusion of the Equivalent Model 
of the External System. 
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CHAPTER III 

THE AUTOMATIC GENERATION OF ALTERNATIVES 

General 

In this Chapter the problem of defining the set of admissible 

controls u(x(k),k+l) is considered. The state of the system x(k) at 

stage k is assumed to be known. The set u(x(k),k+l) is then defined as 

the set of controls u(k) which will yield an admissible system state 

x(k+l) at stage k+1. 

A control u(k), otherwise referred to as an alternative, is a 

discrete combination of facilities (transmission lines) which will be 

in service for the stage k+1. 

Given the discrete types of transmission lines and the available 

locations or rights of way for construction, the conceivable controls 

u(k) at stage k can be obtained by considering all the possible com

binations. This, however, leads to an enormous number of discrete 

controls. This thesis reports that most of these controls are either 

inadmissible or they are not qualified to be in the optimal trajectory. 

This Chapter substantiates the above statement and provides techniques 

for the automatic generation of alternatives. 

The set of all possible controls S (k), which can be applied at 
a 

stage k, state x(k) is defined as the set of all possible ways of ex

panding exactly M* rights of way with transmission lines chosen from L* 

discrete types. M* is the set of rights of way which are available for 
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construction. L* is the set of discrete types of transmission lines 

which may be used for the expansion of the system. Because of standardi

zation in the design of transmission lines and transformers, the number 

L* is very small. The usual case is L*=2. This corresponds to the case 

where the transmission network is expanded with a certain type1 of line, 

for example 230 kV lines, and at the same time an overlay of lines 

operating at higher voltage, (i.e. 500 kV) is to be started. 

The number of all possible controls is very large. Suppose K* is 

the maximum number of circuits allowed in an alternative and further 

assume that only one circuit is allowed on a right of way. Then the 

number of controls in the set u(k) is: 

K* 
r M* i 

na = I {!_ ) (L*) (42) 
i=o 

This number is a large number by itself. On the other hand, the number 

of possible trajectories is much larger. Assuming the same number of 

controls, na, for each state and stage, and the same number of available 

rights of way, then the number of trajectories will be: 

K* 
N r M* i N = (na)* = ( I <" )(L*)V (43) 

where N is the number of stages in the planning period. 

The numbers na and nt are very large for even small networks. 

Therefore, the problem of planning a transmission network appears to 

be computationally infeasible. However, the research of this thesis has 



revealed the following facts: (1) If the construction of the na al

ternatives at a given state x(k) and stage k+1 is done concurrently with 

the optimization procedure (in a general planning algorithm), then it 

is possible to restrict the number na in a computationally manageable 

number. This is so because the majority of the possible alternatives 

na fails to satisfy optimality conditions which may be generated by the 

optimizing algorithm; and (2) The problem of planning the expansion of 

a transmission network can be viewed as capacity expansion in order to 

alleviate circuits which become loaded over their capacity or close to 

it as demand increases. It has been observed that alleviation of the 

overloads can be achieved, in an economic way, by circuit additions to 

a limited number of rights of way. We shall call these rights of way 

effective for network reinforcement. The number of effective rights of 

way for network reinforcement represents a small percentage of the total 

number. In this way a reduction of the size of the problem is achieved. 

Optimality conditions are discussed in Chapter IV. In this 

Chapter the detection of effective rights of way for network reinforce

ment is investigated. Two different detection schemes are presented. 

And finally, the construction of the controls is discussed. 

Network Coherency 

The flow of power on a network is a dynamic phenomenon which is 

governed by Kirchhoff's laws. Under given constant power injections at 

the nodes of the network, the power flow on a given circuit is a 

function of the impedances of the existing circuits. In DC-model 

terminology, the power flow can be equivalently represented by phase 



angle difference across the circuit 

** - V w • • • -V <44> 

where y. is the "capacity" of the circuits on the right of way i. 

From the planning point of view, the following question is very 

important: If the capacity y. on the right of way i is increased, what 

will happen to the power flow on the right of way I, or equivalently to 

the phase angle difference ip . If the variation of y. is very small, 

then we can assume 

Ah - zi Ayi 
^1 

The derivative 

! * * 

indicates the direction of change of the power flow on right of way & 

when the capacity on the right of way i is changed. 

Let us consider the vector 

3»A 3*A 
"Ty ~ C"3y~"] 

* yi i = 1,2, . . . ,M 

3*£ It has been observed that only few components of the vector —r— have 
3y 

relative high value and the rest of them have value orders of magni

tude less. The components with high relative value define a set of 
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rights of way. Changes in the transmission "capacity" of these rights 

of way have considerable effect on the power flow on the circuits of 

the right of way I. The power flow on the right of way £ is insensitive 

to changes of the transmission capacity of the rest of the rights of way, 

Therefore, there is a kind of coherency in the network. 

We shall call a right of way i coherent to the power flow on the 

right of way I if the following relation is satisfied: 

3 *£ 
3 y , 

3 *£ 
3 ^ 

> X 
coh 

where x is a defined threshold value for coherency. 

Therefore, coherency is defined in terms of a threshold x , . 
coh 

Values in the neighborhood of 0.10 are very reasonable. In this case, 

the number of rights of way which are "coherent" to the power flow on 

a particular circuit is very small compared to the total number of rights 

of way. This observation is of great practical value. 

Unfortunately, this coherency is dependent on the power injec

tions at the nodes of the network. In Appendix B, an expression for 

the derivatives 
3*j 

is given: 

3 7 : = -Auh 
J l 

(45) 
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where A.. = e „Y e. is dependent only on the system's parameters, and 
Jli ^ i 

ip. is the phase angle difference across the right of way i. 

The problem of planning the expansion of a transmission network 

can be viewed as capacity expansion in order to alleviate circuits 

which become loaded over their capacity or close to it as demand in

creases. For such a circuit there is practically a small number of 

coherent rights of way on which construction of new circuits may al

leviate the undesirable condition. Construction of new circuits in 

other areas of the system will affect the undesirable condition very 

little, practically none. Therefore, the existing coherency in a 

transmission network provides a basis for size reduction of the planning 

problem. Since the coherency depends on both network topology (and 

parameter values) and power flow on the network and since both may vary 

widely in a period of several years, it is then imperative to consider 

a certain coherency pattern to be valid only for a short period of time, 

for example, one year. 

Sensitivity Analysis 

The expansion of the transmission network can be viewed as a 

sequence of network reinforcements throughout the planning period. At 

a given time (stage) in the future, several circuits will be overloaded 

or very close to being overloaded. These circuits can be obtained by 

solving the power flow equations for the conditions prevailing at that 

future time and under all postulated outages. 

Given the circuits which need reinforcement, the problem is to 

find the rights of way on which construction of new circuits may 

alleviate the undesirable loading of the circuits. 
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From the previous section it follows that candidates are all 

rights of way which are coherent to the above circuits. It is there

fore necessary to formulate a procedure for detecting coherency. 

Furthermore, since cost of new circuits is a decisive factor, it is 

imperative to include cost considerations in the detection of the 

rights of way which are effective for reinforcing the overloaded 

circuits. 

Two detection schemes are presented in this chapter. Each one 

involves the computation of the sensitivity coefficients 

Hi 
g ^ , i = 1, . . . ,M 

1 

for every right of way Z on which a circuit is overloaded or near 

overloaded. This task is referred to as sensitivity analysis. In 

Appendix B the technicalities of the computations are presented. 

The detection schemes to be presented are simple and represent 

the conclusion of long experimentation. 

Single Outage Analysis 

Given a state of the transmission network x(k) at stage k, and 

a set of conditions (power injections at the nodes of the network) for 

the next stage k+1, it is desirable to detect all circuits which may be 

critically loaded during the next stage and for all single contingency 

conditions. This information is very useful. The expansion of the 

transmission network is then directed towards reinforcing these 

critically loaded circuits. It should be understood that in a 



transmission network there is plenty of transmission capacity, so to 

speak, which cannot be fully employed because of the dynamic nature of 

power flow (Kirchoff's laws) and because the operator of the system has 

limited control in channeling the flow of power. 

We shall say a circuit is critically loaded if the relation 

P l > x 
— ' — over 

is satisfied for at least one single contingency condition or the base 

case conditions where P is the actual power flowing through the circuit, 

P is the maximum permissible power to flow through this circuit and 

X is an externally defined parameter. 
over J r 

Using the above definition of a critically loaded circuit and 

the DC power flow model, the detection of the critically loaded circuits 

requires the solution of the following relations: 

Y(m)(x(k)) • 6(m) =P(0)(k+l) (46) 

lO-l»1
w-« j

wl<W4<*«'»> (47) 

m = 0,1,2, . . . ,M 

% = 1,2, . . . ,M 

The symbols have been defined in Chapter II. A circuit, Z, is 

critically loaded if inequality (47) is violated for this circuit for at 

least one value of m. Furthermore, an outage m which causes a circuit 



to be overloaded is called a critical outage. 

The set of rights of way with critically loaded circuits is 

denoted by S and the set of critical outages is denoted by S . The 
u c 

solution of the relations (46) and (47), which is referred to as single 

outage analysis, yields both sets S and S . 

Detection Scheme I 

The statement of this detection scheme is: A network configura

tion, x(k) the power injections at the nodes of the network at stage 

k+1, and the set of rights of way with critically loaded circuits S , 

are given. Find the rights of way on which construction of new circuits 

may eliminate the critical loading of the circuits S in an economic 

way. 

Let S denote the set of rights of way to be detected. Then 
hi 

the detection scheme I involves the following steps: 

1. sE = •. 

2. Consider one circuit at a time from the set 

S . Let it be circuit £. u 

3. Compute the effectiveness ratio vector 

[E.R.V.I. 

E.R.V. = 
3*, 

W, x.d2 

1 1 i = 1,2, . ,M 

where: 



x is the relative acquisition cost of 
JL 

one mile long transmission line on 

the right of way £ 

3<fr£ 

- — i s the sens i t iv i ty coefficient computed 
3yi 

with the base case network configuration 

d is the length of the right of way I. 
id 

4. The rights of way i, which satisfy the inequality 

dh A2 
w:x »dt 
7 x.d. 
3 ^ x * 

where: 

x is a threshold parameter 

Form a set. let it be S' , 
E 

5 * S r , = S ^ U S ^ 

E E E 

6. If all circuits in the set S have been considered 
u 

the detection scheme has been completed. Otherwise 

return to step (2). 

This detection scheme is very simple and fast from the computa

tional point of view. Sensitivity coefficients are computed for the 

base case network configuration. The threshold x . is defined 
cut 
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externally. A value of 0.2 to 0.4 is adequate. The detection is very 

reliable because each critically loaded circuit is processed separately, 

Detection Scheme II 

The statement of this detection scheme is: A network configura

tion, x(k), the power injections at the nodes of the network at stage 

k+1, the set of rights of way with critically loaded circuits S , and 

the set of critical outages S are given. Find the rights of way on 

which construction of new circuits may eliminate the critical loading 

of the circuits S in an economic way and for all single contingency 

conditions. 

Again let S denote the set of rights of way to be detected. 
E 

Then the detection scheme II involves the following steps: 

1 . S £ = <j>. 

2. Consider one circuit at a time from the set 

S . Let it be circuit £. 
u 

Compute the effectiveness ratio vectors 

(E.R.V.), one for each critical outage from 

the set S 

(E.R.V.)J = 

3<{) <j> 

3y. 
xA 

3<t> (J) 

3y 
I .2 

• x.d. 
l l i = 1,2, ,M 

and jcS . The variables have been defined in 
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detection scheme I. 

4. The rights of way i, which satisfy the inequality 

'3<f> 

3y 

(J) 

7 ' XA 
2A (j) 0 9(k .,2 
"5 • x.d. 
9y0 i ! 

- Xcut' jeSc 

form a set, let it be S'. 

5. S^ = S US' 
E E E 

6. If all circuits in the set S have been con-
u 

sidered, the detection scheme has been completed. 

Otherwise, return to step (2). 

This detection scheme is more complicated than the first one. 

For each circuit in the set, S , the effectiveness ratio vectors for a 
u 

series of network configurations are computed. This is justified 
3*£ because the sensitivity coefficients - change drastically for two 
i 

configurations differing by only one line. This detection scheme 

requires more computations but it is reliable and a higher value of 

the threshold parameter x is sufficient. 
cut 

Availability of Right of Way 

If the availability of the rights of way is constraint, then a 

further operation on the set S is necessary. If S is the set of the 

available for construction rights of way, then 
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s„ = s ns_. 
E E A 

Construction of Alternatives 

Given the set of effective rights of way, S_, it is easy to 

construct the alternatives (controls) u(k). To this purpose, engineering 

judgement, reasonability, and general policies of the particular company 

should be considered. 

A general discussion of the problem is presented in this 

section. 

The problem of constructing the controls u(k), given the set of 

rights of way S and L* types of transmission lines to be used for the 
E 

expansion of the system, is basically a combinatorics problem. This 

problem can be partitioned into two subproblems. 

(1) Given L* types of transmission lines, find all the possible 

combinations of these facilities which can be constructed on a given 

right of way. This is a fairly simple problem. However, it may happen 

two discrete combinations to be identical from the operational point of 

view but different in cost. In this case, the combination with the 

higher cost should not be included in the optimization algorithm. This 

statement is obvious. It is now imperative to develop a systematic way 

to exclude these combinations. A primitive cost-capacity curve for each 

line type in a particular right of way is constructed. Figure III.l 

shows two primitive cost-capacity curves. The curves are truncated when 

the available space of the right of way is exceeded. 
Let the primitive cost-capacity and right of way curves be 
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(a) Primitive Cost-Capacity Curve of a 400 MW 
Single-Circuit Line Requiring 100 ft. Right 
of Way. 
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(b) Primitive Cost-Capacity Curve of a 800 MW 
Double-Circuit Tower Requiring 130 ft. Right 
of Way. 

Figure III.l. Primitive Cost-Capacity Curves 



denoted by the following: 

Cost: C.(x.), x. = 0,d,2d, . . . ,M d 

Right of Way: r.(x.), x. = 0,d,2d, . . . ,M.d 

where d is a capacity increment common to all line types, and M.d is 

the maximum capacity of the i type line which can be constructed 

within the limits of the available right of way. 

The optimal cost-capacity curve is derived from an operation 

similar to convolution of these primitive curves 

C(x) = C. (x_)*C,(x_)* . . . *C (x ) (48) 
1 1 * 2 m m 

where m is the number of primitive curves and C(x) is the optimal ccst-

capacity curve for the right of way under consideration. The convolution 

type operation denoted by the operator * is defined as follows: 

C. . (x. .) = C. (x.)*C. (x.) 
13 ID 1 1 D D 

Min{L (x. .-v,v) [C. (x^-v) + C. (v)]} 

(except zero) 

v = 0,d,2d, . . . ,M.d 

and 
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0 if r.(x.) + r,(x.) > r 
i l 3 D T 

L. . (x. ,x .) =< 
13 i D 

1 otherwise 

and r is the total available space in this right of way. 

Equation (48) yields a staircase function. Each step corresponds 

to a certain combination of transmission lines. This combination is 

optimal in the sense that there is not another combination of transmis

sion lines which has the same transmission capacity and which costs 

less. 

(2) Assuming that the optimal cost capacity curves for each 

right of way are known, it is simple to construct the alternatives. 

If n, is the number of steps in the optimal cost-capacity curve of the 
X/ 

th 
I right of way, then the total number of alternatives is 

na = n (n + 1) (49) 
US^ * 

E 

since there are n +1 ways to expand the right of way I (the possibility 

of no addition of transmission capacity to the right of way I has been 

considered). 

The described partition of the problem reduces the complexity 

of the overall problem without impairing the generality of the approach. 

The mechanics of determining the set of controls u(x(k),k+l) at 

stage k, stage x(k) should be obvious. A control matrix u(k) belonging 

to this set is defined as follows: 



u±l - 0 if « S E 

any i 

. , "i* " S U " *£SE (50) 

1=1,. . . ,L 

where: 

S.„ is the number of transmission lines of type i in 
lil 

the combination of lines corresponding to the 

selected step of the optimal cost versus capacity 

curve of the right of way I. 

The set of controls u(x(k),k+l) has na (Equation 49) elements 

(control matrices u(k)). 

Optimality and Feasibility Conditions 

A procedure of determining the controls (alternatives) which can 

be applied at a state x(k) of the system at stage k has been presented. 

The number of these controls, na, is moderately large yet lower than the 

total number of controls. On the other hand, since we are interested in 

the long range planning of the system, we would like to know the possible 

ways of expanding the system throughout the planning period. If na(k,i) 

are the controls applicable at stage k, state i(x.(k)), then the possible 

number of expansions of the network throughout the planning period is 

N-l 
nt = I I na(k,i) (51) 

k=0 i 

This number can be extremely large and therefore the problem appears to 



be computationally infeasible. 

This conclusion is inevitable if the construction of alternatives 

is considered independent from the optimization algorithm. However, if 

the generation of controls is performed concurrently with the optimiza

tion, it is possible to tremendously limit the number of alternatives 

by using information from the optimizing algorithm. Of course this 

procedure will not impair the optimality of the results. 

Consider the alternatives na(k,j) at stage k, state x . (k). 

Every alternative, in order to enter the optimization algorithm, should 

satisfy the feasibility and optimality conditions. 

Feasibility Condition 

An alternative u(k) from the set u(x.(k),k+l) will enter the 

optimizing algorithm if the state x(k+l), 

x(k+l) = x.(k) + u(k) (I) 

is admissible for stage k+1. The state x(k+l) should be checked with 

the constraints which define the state admissibility (I or II, Chapter 

II). Because the majority of the constraints are ineffective, it is 

expedient to retain only those constraints which are effective or close 

to being effective. The control u(k) meets the feasibility condition 

if the state x(k+l) satisfies the set of effective or close to being 

effective constraints. 

Optimality Condition 

An alternative u(k) from the set u(x.(k),k+l) satisfies the 

optimality condition if and only if 
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C(u(k)) < J ~ J (52) 
P 

The inequality (52) is derived in Chapter IV. The optimality condition 

is simple from the computational point of view and therefore should be 

applied first. 

The number of controls u(k) which meet the feasibility and 

optimality conditions is relatively small for even large networks. 

These controls, which form a set S* (k), will enter the optimizing 
ju 

algorithm. Obviously, 

S* (k) c u(x.(k),k+l) 
Du 3 

In summary, the automatic generation of controls algorithm 

generates a large number of controls (alternatives). However, infor

mation obtained from the optimizing algorithm and a feasibility condition 

can be used in order to prove that the majority of these controls do not 

belong to the optimal trajectory. 

Discussion 

The detection schemes actually reduce the size of the overall 

problem. The number of the effective rights of way is actually a small 

percentage of the total number of rights of way. Therefore, the detec

tion schemes define a subproblem of the problem. Then the optimization 

method will yield the optimal solution to the subproblem. It can be 

argued that this optimal solution might not be the global optimum to the 

problem. This, however, is only a theoretical argument. Practically, 



the solution of the subproblem is the global optimum if the values of 

the parameters x and x are appropriately selected. 

It should be obvious that the degree of the problem size reduction 

is controllable through the parameters x and x .. If 
* * over cut 

x = 0 
over 

or 

X = -00 

cut 

then no reduction of the problem size is performed. The solution of 

the overall planning problem with x = 0 or x = -» will yield 
r over cut J 

the global optimum. This is possible for small networks. It has been 

observed, however, that relatively high values of the parameters x 

and x still yield the known global optimum. For the test system A 

(see Chapter VII), the known global optimum was obtained with x = .98 

and x = .80. This experimental result signifies the merit of the 

automatic generation of alternatives. 

In Chapter VII the performance of the automatic generation of 

controls algorithm is evaluated. The criteria are: 

1. Computational effort. 

2. Number of controls in the set S* (k). 
Du 

The criteria are self-explanatory. In Chapter VII quantitative 

measures of the performance of the algorithm with respect to the above 



two criteria are defined. These measures are computed for two test 

systems and for various values of the parameters x , x , and the •* over cut 

stage variable k. 

Conclusion 

The number of alternatives that can be selected at a particular 

state of the transmission network, x(k), and stage k is enormous. This 

fact renders the planning problem an insurmountable computational burden. 

The dynamic nature of the power flow on the network practically 

restricts the number of rights of way which are effective in reinforc

ing the network. Two detection schemes, based on sensitivity analysis, 

have been developed. They detect all rights of way which are effective 

in reinforcing the network at a given time. Two parameters x and 

x control the output of the detection schemes. A reduction of the 

problem size is immediately achieved. 

The construction of the set of alternatives or controls u(x(k), 

k+1) is based on combinatorics and problem partitioning. The most 

important finding is the fact that when the construction of the set 

u(x(k),k+l) is done concurrently with the optimizing algorithm, it is 

possible to disqualify the majority of the generated controls without 

impairing the optimality of the results. This is achieved with 

optimality and feasibility conditions. 
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CHAPTER IV 

THE NON LINEAR BRANCH AND BOUND 

General 

The non Linear Branch and Bound is an enumerative approach to 

our problem. It takes advantage of the fact that the problem of trans

mission planning is bounded and therefore the set of the controls is 

finite. 

Enumeration of the discrete controls yields to a tree-like 

structure as in Figure IV.1. This figure illustrates a four stage 

planning period. There are ten discrete trajectories. It is obvious 

that in order to obtain the optimal trajectory, it is sufficient to: 

(a) Determine the set of admissible trajectories. 

(b) Compute the performance criterion J for each 

admissible trajectory. The trajectory with 

the smallest J is optimal. 

A trajectory is admissible if and only if it yields an admissible 

state at any stage. 

We call v.(k) the predecessor of v.(k+1), which in turn is called 

a successor of its predecessor. Note that a vertex has a unique 

predecessor but generally more than one successor. 

Separation 

The successors of a vertex v.(k) determine a finite set S*(k) of 



v1(2) 

Figure IV.1. 

u?(2) 
» r3) ~ Vl64)) v,A(4) 

Enumeration Tree. 
oc 
re 



subsets of S.(k), where S.(k) is the set of trajectories emanating from 

vertex v.(k). Obviously, 

ut = S. (k) 
t€S*(k) : 

The set S* (k) is called a separation of S.(k). 

It is important to note that S*(k), for the transmission network 

planning problem, is a partition of S.(k) and generally a very small set 

compared to S.(k). 

Branching 

A vertex that is not fathomed and whose corresponding constraint 

set has not been separated is called a live vertex. Branching means 

choosing a live vertex to consider next for fathoming or separation. 

There are many possible rules for branching. Here branching is per

formed to one of the successor vertices of the vertex under considera

tion. If the current vertex v.(k) is fathomed, one simply backtracks 

along the trajectory until a vertex having at least one live successor 

is encountered. One of these successor vertices is chosen for branching. 

If there are no more live vertices, the enumeration has been completed. 

Branch and Bound is an optimization technique that uses the 

basic tree enumeration described previously. It involves calculating 

upper and lower bounds on the objective function in order to accelerate 

the fathoming process and thereby curtail the enumeration. 

The transmission network planning has been formulated as a 

minimization problem which can be solved with the non Linear Branch and 
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Bound method. The efficiency of the method depends on the effectiveness 

of the fathoming process which ultimately depends on the nature of the 

problem. This thesis reports that the fathoming process is very 

effective for the transmission network problem. 

On the other hand, the concept of separation yields good storage 

requirements since it is only necessary to retain one separation per 

stage. 

In the following we will describe the tasks of separation, 

branching, and bounding to our problem. 

Description of the Non Linear Branch and Bound Method 

This section presents a systematic description of the concepts 

and the essential tasks performed by the non Linear Branch and Bound. 

The Concept of a Vertex 

It is easy to describe the concept of a vertex with the aid of 

Figure IV.1. This figure represents an enumeration tree for a four-

stage problem. Each circle represents a vertex. Each vertex is 

associated with a state of the system. 

Consider vertex v.(2) which is associated with the state x_ (2). 

The vertex determines: 

(a) A unique trajectory which brings the system 

from the initial state to the state which is 

associated with the vertex. 

(b) A set of trajectories, namely all trajectories 

which include the vertex under consideration. 
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For example, the vertex which is associated with the state x (2) 

uniquely determines the trajectory {u (0), u (1)} which brings the 

system from the state x(0) to x (2) and also represents the set of 

the trajectories 

{^(0), u1(l), ^ ( 2 ) , ^(3)} 

{^(0), 1^(1), u1(2), u2(3)} 

{^(0), 1^(1), u2(2), u3(3)} 

A vertex is said to be fathomed if and only if it can be proven 

that further exploration is not profitable. 

A vertex may have one or more successor vertices but only one 

predecessor vertex. 

It is obvious that if a vertex is fathomed it is not necessary 

to evaluate the successor vertices. These vertices are said to be 

implicitly enumerated. 

A vertex uniquely determines the state of the system. This 

statement is irreversible since one state may be associated with more 

than one vertex. 

Two trajectories with the same number of steps are said to be 

complimentary if and only if terminate at the same state. For example, 

the trajectories 

(u^O), u ^ l), n2(2)} 
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Cu2(0), u4(l), ug(2>} 

are complimentary if and only if 

x2(3) = x6(3) 

From the above discussion, it is obvious that the number of vertices 

in one stage is always greater or equal to the number of discrete 

states at that stage. 

Before explaining the mechanics of fathoming, it is necessary 

to present the lower and upper bounds. 

Upper Bound 

The upper bound is defined to be the performance criterion J of 

* 
the best-up-to-date trajectory t : 

J = J(t ) (53) 

If no best-up-to-date trajectory is available, the upper bound is 

infinity 

j" = oo (54) 

Note that this definition of the upper bound is independent of the 

vertex at which the enumeration might be. It also remains unchanged 

unless a better trajectory has been found in which case the upper 

bound will be updated. 
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Lower Bound 

Suppose that the enumeration is at vertex v.(k) in the tree. 

Recall that vertex v.(k) represents a set of trajectories, namely those 

which include vertex v.(k). The lower bound is defined to be the 
3 

lower bound of the function J (performance criterion) for the above 

mentioned set of trajectories. That is, the lower bound J_ satisfies 

J_< J(t(v.(k))) (55) 

where t(v.(k)) is a trajectory which includes vertex v.(k). 
3 3 

There are many ways to determine a lower bound J_ which satisfy 

relation (55). A desirable feature of these ways will be simplicity and 

speed in computing it. Two very simple ways are described below. 

(a) Recall that the vertex v.(k) uniquely determines the 

trajectory which brings the system from the initial state to the state 

of vertex v.(k), namely t = {u(0),u(l), . . . ,u(k-l)}. It is obvious 
3 P 

that a lower bound of the performance criterion of the trajectories 

t(v.(k)) will be 
3 

k-1 N-l jl (u(m)) 
£ = I ™ " * I — r — + fc.(x(m+l),m+l)} (56) 

m=0 (l+i)m A-m (l+i)A"m 2 

It is trivial to show that 

J < J(t(v.(k))) 
- 3 



(b) In practical situations it is expedient to fully understand 

the nature of the performance criterion and to take advantage of ob

served behavioral patterns. For example, it has been observed that in a 

practical transmission system the total energy losses during a year is 

a monotonically increasing function of the year variable. This obser

vation can be introduced as an assumption which will be used for the 

definition of a better lower bound. Assumption: The operational cost, 

S, (x(k),k), is a monotonically increasing function of the stage variable 

k. Then the lower bound can be defined as: 

k-1 N-l JL(u(m)) 
i = lo l^\l 7 - ^ + * 2 ( ( m + 1 > ' m + 1 , } + 

m=0 (l+i) A=*n (l+i) 

N 
+ £ (x(k),k) • I „ - (57) 

2 ,-,,,. »m-l 
m=k+l (l+i) 

Given the stated assumption, it is easy to prove 

J < J(t(v.(k))) 

It should be emphasized that every vertex v.(k) has a lower 

bound J. It is therefore expedient to write 

J = J_(v.(k)) 

in order to explicitly denote the dependence of the lower bound on the 



vertex. 

Separation 

Consider vertex v.(k). Let us recall that this vertex represents 

a set of trajectories S. (k). Every trajectory in the Set S . (k) contains 

vertex v,(k). Consider vertex v, (k+1) and assume that v, (k+1) is a 
j A A 

successor of v.(k). Vertex v. (k+1) represents a set, Ŝ  (k+1), of 
J A A 

trajectories which is a subset of S. (k): 

S, (k+l)cs. (k) (58) 

To prove this, it is only necessary to observe that every trajectory of 

the set S.(k+1) includes vertex v.(k) and therefore belongs to the 
A 3 

set S. (k) too. 
D 

The set S*(k) of the sets S (k+1) is called a separation of 

S.(k). There is a one to one correspondence between the elements of 

the set S*(k) and the controls u(k) which can be applied at the vertex 

v.(k) because a successor vertex can be uniquely defined by a control. 

Therefore, the set S*(k) is finite (Chapter III). This observation can 

be used as the basis to prove the finiteness of the overall problem 

(next section). On the other hand, the fact that there is a one to 

one correspondence between the set of controls u(k), S*(k), which can 

be applied at a vertex v.(k) and the elements of the set S*(k) estab

lishes an equivalence between these two sets. Therefore, the two sets, 

S* (k) and S* (k), can be used interchangeably. The above observations 

will be used in the discussion of optimality. 
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Finally, the set S* (k) represents a partition of S.(k). This is 

so because a trajectory t cannot belong to two different elements of the 

set S*(k). 
D 

Finiteness 

It is always useful to guarantee that the non Linear Branch and 

Bound algorithm will terminate after a finite number of steps. To 

prove this it is only necessary to prove that the number of possible 

trajectories is finite: 

Since the set S* (k) contains a finite number 
D 

of elements, it is possible to find a number 

H such that: 

number of elements in S*(k) < H 
3 

for any j,k 

By inspection of the enumeration tree: 

N 
number of trajectories < H 

where N is the number of stages. 

Therefore, the enumeration is bounded and the 

algorithm will terminate after a finite number 

of steps. 

Fathoming 

A vertex v.(k) is fathomed if: 
3 
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(a) J < J(v.(k)) (59) 
- 3 

(b) S*(k) = <j>, k ^ N (60) 

(a) The fathoming here is performed by bounds. If relationship 

(59) holds, it is easy to prove that further exploration from vertex 

v.(k) is not profitable in the sense that no one trajectory which includes 

vertex v.(k) can yield a performance criterion J less than J. 

Consider the set of trajectories S.(k). If teS.(k), then t 
3 3 

includes vertex v.(k). By definition of the lower bound 
3 

J (t) > J(v.(k)) 
teS.(k) 3 

3 

J (t) > J by using (59) 
teS.(k) 

3 

Therefore, every trajectory teS.(k) yields performance criterion higher 

than J and vertex v.(k) should be abandoned. 
3 

(b) Equation (60) states that if no successor vertices can be 

found for the vertex v.(k), then vertex v.(k) is fathomed. 

Let us recall that the number of elements in the set S*(k) equals 

the number of elements in the set S* (k). Then 
3U 

S*(k) = 4> ++ S* (k) = <j>. 
3 3^ 



Therefore, a vertex v.(k) is fathomed if no admissible control can be 

found to be applied at vertex v.(k). 

Branching 

A vertex that is not fathomed and whose corresponding set of 

trajectories has not been separated is called a live vertex. Branching 

is the task of choosing a live vertex to consider next for fathoming or 

separation. 

Consider vertex v.(k), which has not been fathomed and separated, 

In this case we know the set S* (k) of controls u(k) which can be ap-
DU 

plied to the state of vertex v.(k). Every control u(k)eS* (k) defines 
3 DU 

a successor vertex v.(k+1) of v.(k). This vertex is, by definition, a 
A 3 

live vertex. It is now obvious that branching can be easily performed 

by choosing one control, u(k), from the set S* (k). 

Branching from a vertex, v.(k), is possible as long as at least 

one live successor vertex exists. 

The Non Linear Branch and Bound Algorithm 

The described tasks can be organized into an algorithm which 

will be equivalent to a complete enumeration of all trajectories. 

Figure IV.2 presents the flowchart of the basic algorithm. 

Block A represents the task of separation. Separation is 

performed by determining the set of admissible controls at the vertex 

under consideration. Therefore, block A is the automatic generation of 

alternatives (controls). This is fully justifiable since the 

equivalence between the sets S* (k) and S* (k) has been established. 
3U 3 
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No 
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Figure IV.2. The Basic Non Linear Branch 
and Bound Algorithm. 



Efficiency 

In a problem as large as the one considered in this thesis, the 

question of efficiency is of great importance. Loosely speaking, an 

optimization algorithm is efficient if with a small amount of computations 

it can yield the optimum. An evaluation of the flow diagram of Figure 

IV.2 reveals that the bulk computations are performed in block A. The 

number of times the algorithm goes through block A is an indication of 

how efficient the algorithm is. On the other hand, this number depends 

on the size of the problem that is the total number of vertices in the 

complete enumeration tree of the problem. A reasonable normalized index 

of efficiency can be defined as: 

„ ,. .„-_. . „. , . number of times block A was called .... 
E.I. (Efficiency Index) = - z 7̂  (61) 

J total number of vertices 

The above defined efficiency index depends on several factors 

which will be discussed in the following. Numerical evaluation of this 

dependence will be given in Chapter VII. 

Ordering of Alternatives 

Consider vertex v.(k) which cannot be fathomed by bounds. 

Therefore, next task (from the flowchart) is to call block A which will 

determine the admissible controls at that particular vertex. Furthermore, 

for each control, u(k), the following quantity will be computed: 

N-l % (u(k)) I (x(k+l),k+l) 
C(u(k)) = I — — + 

X=k (l+i)X (l+i)k 



It is expedient to compute C(u(k)) because the performance criterion 

can be readily computed as a sum of C(u(k)) 

N-l 
J = I C(u(k)) 

k=0 

Furthermore, C(u(k)) can be used to order the controls u(k). Since the 

problem has been formulated as a minimization one, the first control 

will be the one with minimum C(u(k)), as in Figure IV.3. 

Then during the first branching from vertex v.(k), vertex 

v (k+1) will be selected, during the second branching from v.(k), 

vertex v (k+1) will be selected, and so on. With a little bit of 

imagination one can expect that an ordering of the alternatives like the 

one described will yield a "better" upper bound J of the performance 

criterion in the sense that the value J is closer to the optimal value 

J*. This fact has been actually observed. Now by inspecting equation 

(59), it is obvious that fathoming by bounds has a better chance if the 

upper bound J has a low value. Therefore, a better upper bound will 

speed up the fathoming and therefore will improve the efficiency of the 

algorithm. 

Optimality Condition 

A very attractive feature of the method is the following: 

Once a feasible trajectory has been found, it is possible to generate 

constraints which will suppress the computational burden. 

In this section a constraint for the cost of the individual 

controls will be generated. This constraint will be used in the automatic 
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generation of admissible controls in order to limit the number of 

generated controls while retaining optimality. As such, this constraint 

is rather an Optimality Condition. 

The derivation of the optimality condition assumes that a 

feasible trajectory t = {u (0),u (1), . . . ,u (N-l)} has been 

found and therefore its performance criterion J is known, J = J(t ). 

Recall that J is an upper bound of the performance criterion since we 

are interested in trajectories which yield a return J less than J 

(minimization). 

Let us consider a vertex, v.(k), with the associated state x.(k) . 

The partial trajectory t = (u(C),u(l), . . . ,u(k-l)) which brings the 

system from the initial state x(0) = C to the state x.(k), is uniquely 

determined by the vertex. Therefore, the return function can be 

computed for the stages 1,2, . . . ,k and it is: 

k-1 N-l £ (u(m)) 
J = Y < T : + £ (x(m+l) ,m+l) 
P m=0 (l+i)

mU^m (l+i)
X-m 2 

It is obvious that any trajectory which includes the vertex 

v.(k), under consideration, i.e. 

t ^{u(0),u(l), . . . ,u(k-l),*,*, . . .} 
teS.(k) 

will have a return function 



J = J + e 
P 

where e is a non-negative quantity, unknown at the present time. This 

statement is obvious by inspecting the definition of the performance 

criterion. 

However, we are interested in the controls u(k) that can be 

applied at stage k. It is expedient, therefore, to analyze the non-

negative quantity e as follows: 

. N-l I_(u(k)) 
e = ^ - < I r^-+ H9(x(k+l),k+l) ) + e' 

(l+i)K X=k (l+i)A k 2 

where e" is another non-negative quantity, unknown at the present time. 

Recall that given a vertex (v.(k) in this case) and an admissible 

control u(k), a successor vertex is uniquely determined, say v.(k+1). 

Consider now the set of trajectories which include the vertex v.(k+1): 

t = {u(0),u(l), . . . ,u(k-l),u(k),*,*,*, . . .} 

teS.(k+1) 

The performance criterion of any of these trajectories is 

. N-l I (u(k)) 
J = J + r-< I ~ — + I (x(k+l),k+l) f + e' 

P (1+i)* X=k (l+i)A"k 2 
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It is obvious now that the set S.(k+1) may include a trajectory 

"better" than t if and only if 

N-l I (u(k)) 
r + ^ - < I ~ r-r- + £0(x(k+l) ,k+l)> + e' < J (62) 
P (l+i)k Lx=k (l+i)*"* 2 

A trajectory t is "better" than t if and only if it yields a return 

function J less than J (minimization problem). This definition eliminates 

the necessity to prove condition (62). 

Condition (62) can be rewritten: 

N-l I (u(k)) 1 
— r \ I 5-5-+ A <x(k+l),k+l)> < J - J - e' < J - J 

L+i)k| A=k (l+i)X"k 2 p p 

The last inequality follows from the fact that E 1 is a non-negative 

quantity 

N-l £n(u(k)) 
(63) —Sri I "—Trr+ A 2 ( x ( k + 1 > ' k + 1 > r < J • Jn 

(l+i)1" [x=k (l+i)A k 2 

Inequality (63) is an optimality condition for all controls u(k) 

which can be applied at vertex v.(k). It is important to stress the 

fact that the optimality condition (63) depends on the vertex since J 

is generally different at different vertices. 

The optimality condition (63) can be transformed into more 

useable forms. For example, it can be transformed into maximum 
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permissible number of circuit miles in the control u(k). 

The above derived optimality condition, very simple in principle, 

has a tremendous impact on the efficiency of the overall algorithm. It 

can be used directly in the automatic generation of controls algorithm 

to eliminate a large number of controls which do not belong in the 

optimal trajectory. Numerical evaluation of the impact of the optimality 

condition on the efficiency of the algorithm is given in Chapter VII. 

Starting Upper Bound 

At the beginning of the algorithm it is not known what the values 

of the performance criterion might be. On the other hand, it is desir

able to have an upper bound on the value of the performance criterion J 

in order to speed up the fathoming procedure. If such an upper bound is 

not known, it is necessary to assume that J is unbounded until a bound 

has been found. In other words: 

J* = °° (54) 

where J denotes an upper bound for the criterion J. 

It should be noted that the algorithm can work with the starting 

upper bound of equation (54). However, the overall algorithm speeds up 

if we relax equations (III) and (IV) until we find a "better" upper 

bound than the one in equation (54). For the minimization problem an 

upper bound J is "better" than J if and only if 

J 2 < Jl 



Relaxation of the relations (III) and (IV) is meant in the sense 

that only controls (states) which belong to a subset of u(x(k),k+l) 

(X(x(k-1) ,u(k-l) ,k)) are considered. The reason for doing so is that 

the objective here is to find a feasible trajectory as fast as possible. 

The performance criterion computed for this trajectory, which will be 

finite, shall be an upper bound for the overall problem, better than the 

one of the equation (54) . 

Figure IV.4 depicts the algorithm which by relaxing constraints 

(III) and (IV) searches for a feasible trajectory and then computes 

the performance criterion of this trajectory. This value can be used 

as the starting upper bound on J in the main algorithm. The key idea 

in Figure IV.4 is to force the automatic generation of alternative 

algorithm to generate only one admissible control if possible (in the 

worst case only few admissible controls). The number of generated 

admissible controls can be controlled with the parameters x and 
over 

x [Chapter III]. However, since strict values of the parameters 

x and x might yield no admissible control, an iterative loop, over cut ' *' 

in which the values of these parameters are successively lowered, is 

necessary to guarantee the detection of at least one admissible control. 

The rest of the flowchart is self-explanatory. 

The above idea can be viewed as follows: The optimization 

algorithm is divided into two phases. 

First phase; Determine, as fast as possible, a feasible 

trajectory and compute its performance criterion which is to be 

used as the starting upper bound for phase two. 
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Second phase; Let the upper bound of J be the one found in the 

first phase and proceed to the solution of the problem with the non 

Linear Branch and Bound. 

The use of starting upper bound increases the efficiency of the 

non Linear Branch and Bound algorithm. Quantitative evaluation is 

given in Chapter VII. 

In summary, the efficiency increasing modifications of the 

algorithm can be incorporated in the basic algorithm. The result is 

illustrated in the flowchart of Figure IV.5. 

Computational Aspects and Storage Requirements 

A very attractive feature of the method is the low storage re

quirements. It basically requires the storage of N-states x(k), k=0, 

1, . . . ,N-1 and N sets of controls S* (k), k=0,l, . . . ,N-l and the 
ju 

data. In this way, in core solutions can be achieved. 

Now let us consider the state x(k) and the corresponding set 

S* (k), as in Figure IV.3. 

Let us assume that the DC-load flow matrix of the state x(k) is 

known and has been triangulated. To evaluate a successor state x.(k+1), 

a series of load flows is required. Normally, we should form the DC-

load flow matrix for the state x.(k+1) then triangulate it and proceed 

to the load flow analysis. However, because the control matrix u.(k) 

is highly sparse, a faster approach can be used. Load flow analysis of 

the state x. (k+1) can be performed with the triangulated DC-load flow 

matrix of the state x(k) and the control u.(k) by using the well known 

matrix inversion lemma. In so doing, the triangulation of the DC-load 
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flow matrix of state x.(k+1) is avoided. 

On the other hand, the algorithm is receptive to problem reduc

tion ideas: For the state x(k+l), stage k+1, it can be readily determined 

which security-reliability constraints are effective or near effective. 

These constraints shall be called the working constraints. The working 

constraints represent a small percentage of the total number of con

straints. Now the states x (k+1),x (k+1), . . . can be checked for 

admissibility with the small set of the working constraints. One should 

not conclude that in doing so there is the possibility that an inadmis

sible state might be taken as admissible. This is so because a state 

which satisfies the working constraints and whose corresponding vertex 

cannot be fathomed, is checked to determine if the set of security-

reliability constraints and the set of working constraints are equivalent 

for that particular state and stage. If yes, no action is taken. If 

not, the admissibility of the state has to be rechecked. 

A problem associated with computational and storage requirements 

is present in the non Linear Branch and Bound algorithm. To illustrate 

this problem let us assume that at stage k and state x(k) (vertex 

v. (k)) the automatic generation of controls has been called to generate 

the set S* (k). Furthermore, assume that the controls u(k) of S* (k) 
ju ju 

have been accounted for and therefore vertex v.(k) has been abandoned 
3 

as well as the set S* (k). Now assume that later in the algorithm the 

vertex v.(k) is considered. Assume that the trajectories from the 

initial state to v.(k) and v.(k) are complimentary. Therefore the 

associated state with vertex v.(k) is x(k) identical to the one with 
1 

vertex v.(k). If the separation at vertex v.(k) is needed, the 



automatic generation of controls algorithm has to be executed to de

termine the set S* (k), since this set is not available at the present 

time. It is obvious that a repetition of the same exact calculations 

has occurred. It is possible to avoid this repetition but at a price: 

instead of disposing the sets S* (k) according to the basic algorithm, 

they can be stored and recalled appropriately. The price to be paid is 

the increased storage requirements. 

Optimality 

An enumerative approach to an optimization problem always pro

vides the global optimum for any class of problems assuming that the 

enumeration is complete. Therefore the question of optimality is 

actually a question of completeness of the enumerative scheme. By 

inspecting the enumeration tree of Figure IV.1, it is obvious that the 

enumeration is complete if and only if the set S* (k) is complete in the 

sense that all admissible controls have been included. 

Recall the way the set S* (k) is constructed. Let S (k) be the 
jxi a 

set of all possible controls at some vertex v.(k)—the set S (k) may or 
3 a 

may not depend on vertex v.(k). The automatic generation of controls 

yields a set of controls S, (k) which is a subset of S (k) 
b a 

S. 00 c s (k) (64) 
D a 

The controls in the set S (k) - S,_(k) have been left out of the 
a b 

The set S (k) is identical to the set u(x(k),k+l) of Chapter III, 
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optimization process. Each control in the set S ,0O is checked with 

the feasibility and optimality conditions. The controls which satisfy 

both feasibility and optimality conditions constitute the set S* (k). 

The question now is: Does the disposal of the controls u(k), 

u(k)e(S (k) - S^(k)) affect the optimality of the solution? To answer 
a b 

this question, a discussion is presented in this section and numerical 

results in Chapter VII. 

The formation of the set S, (k) [Chapter III] is not random but 
b 

rather sophisticated and experimentally successful selection of controls 

which have a chance of being admissible and close to the optimal. 

Therefore, the set (S (k) - S, (k)) consists of controls which have very 
a b 

low chance of satisfying both the admissibility and optimality condi

tions. Of course, if it can be assured that the set S (k) - S, (k) does 
a b 

not possess a control u(k) which can satisfy both the feasibility and 

optimality conditions, then the overall method will be globally optimum. 

Another way to guarantee global optimality is to make 

S. (k) = S (k) (65) 
D a 

However, it is not practical to adopt the above suggestion in order to 

guarantee global optimality. The reasons are: 

(a) The number of controls in the set S (k) - S, (k), 
a b 

which satisfy both feasibility and optimality 

conditions, is very small. A normalized measure 

of the above quantity is defined as follows: 



Number of Controls in the Set (Sa(k)-Sb(k)) which Satisfy 
Feasibility and Optimality Conditions . . 

Ps " Total Number of Controls in the Set S (k) 
a. 

Obviously, if ps = 0, the planning method of this 

thesis is globally optimal. 

It is possible to compute ps for small networks. 

This has been done and the results are illustrated 

in Chapter VII, Figure VII.11. 

2. It has been experimentally observed that there is 

a minimum size of the set S,(k) which yields the 

global optimum to a certain problem. Further in

crease of the size of the set S (k) is not profit

able. Since the size of the set S,_ (k) depends on 
b 

the values of the parameters x and x . it 
over cut 

will be expedient to talk about the values of 

x and x instead of the size of the set over cut 

sbW. 

Post-Optimality Analysis 

Following the attainment of the optimal solution to the trans

mission planning problem it is always desirable to study the effect of 

discrete changes in the various parameters of the problem on the current 

optimal solution. One way to accomplish this is to solve the problem 

anew. This, however, may be computationally inefficient. If one makes 

use of the properties of the non Linear Branch and Bound method, the 
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additional computational effort to determine the optimal for new values 

of the variables is considerably reduced. This is the objective of 

post-optimality analyses. 

Post-optimality analyses can be of different kinds depending on 

the changes considered: 

1. Changes in the parameters of the performance 

criterion. 

2. Changes in the constraints, i.e. changes in 

the definition of an admissible network. 

1. Post-optimality analysis, when changes in the parameter 

values of the performance criterion occur, is easily performed. 

The optimal trajectory t* specifies a value of the performance 

criterion J*. This value is basically a function (functional to be 

precise) of various parameters such as cost of one unit of energy, 

interest rate, annual investment cost plus interest of a transmission 

line type A constructed on the right of way m at stage k, etc. For 

simplicity, let us write 

J* = J*(p1,P2/ . . . ,Pv) 

where p,rP0r • • • are the various parameters. 

Let us assume a change Ap. in the parameter p.. 

p! ~ p. + Ap. 
^i ^i l 
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Further, assume that solution to the problem has been attained for the 

new parameter value p! and that the new optimal trajectory is t'* (may 

or may not be identical to t*) and the new value of the performance 

criterion is J'*. On the other hand, evaluation of the performance 

criterion along the trajectory t'* and parameter value p. (old value) 

yields 

JI* = j* + AJ*(Ap.) 

where AJ* > 0. The change in the performance criterion is a functional 

of the change in the parameter value. 

In the real world, each parameter takes values in a range with 

some probability distribution. The procedure just described yields a 

range of values for AJ*( p./i = 1,2, . . . ,v). This mapping of the 

statistics of the parameters into the statistics of AJ* is straight

forward but computationally huge task. However, if it is assumed that 

the statistics of AJ* are known, then given a probability level p we 

can find a number AJ such that 

AJ* < AJ with probability p. 

It follows that given: 

(a) The ranges of the parameter values p., 

i = 1,2, . . . ,v and their probability 

distribution. 
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(b) The solution of the optimization problem 

[trajectory t*, performance criterion J*] 

with parameter values equal to their 

expected values. 

Then the optimization problem solved again with fixed upper bound at 

the level of 

AJ 
J' 

J = J* + AJ = x_J*, x_ = 1 + —-

will yield a set of trajectories S , namely 

teS -*-+ J(t) < J* + AJ 

which is not the null set since t*es . With probability p, the set S 

contains the optimal trajectory for any combination of parameter values, 

If the value x were known from the beginning, we can attain the 

set S with only one solution of the non Linear Branch and Bound al

gorithm: in the flowchart of Figure IV.5, it is sufficient to replace 

the upper bound J = J with J = x J. It is obvious that the so defined 
c 

upper bound J = x J will always be greater or equal to x J*. 

J = x J > x J* 
c c 

Therefore, the set of trajectories, S' attained in the above way will 

possess all trajectories t, satisfying 
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J(t) < x J* 
c 

and possibly some other trajectories. Therefore, 

vs; 

Given the set S (or S 1 ) , post-optimality analysis is easily performed. 

In practice it is possible to obtain a good estimate for the value 

of x . In most cases the parameters p., i=l,2, . . . ,v, which enter in 
c 1 

the computation of the performance criterion, have a very narrow distri

bution. In this case, experience with the non Linear Branch and Bound 

for the transmission planning problem shows that the variable AJ/J* has 

a very narrow distribution too. Therefore, a good estimate for the 

variable x will be a value few percents over unity. 

To summarize post-optimality analysis, the following tasks are 

involved: 

(a) If J* is known: 

1. Estimate a value for x . 
c 

2. Solve the non Linear Branch and Bound problem 

again with J = x J* = constant. The set S^ 
c t 

will be attained. 

3. Perform post-optimality computations for the 

set S only. 

(b) If J* is not known: 

1. Estimate a value for x . 
c 



2. Solve the non Linear Branch and Bound 

problem with the relationship J = J 

substituted by 7 = x J. The set S' 
c t 

will be attained. 

3. Perform post-optimality computations 

for the set S* only. 

2. When changes in the constraints are considered—for example, 

a control center is installed sometime during the planning period and 

therefore, the definition of an admissible network should change— 

post-optimality analysis cannot be performed as easily as in 1. The 

reason is that when there are changes in the constraints, the value of 

the performance criterion may change drastically. Therefore, it is 

recommended that in this case the problem should be solved anew. 
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CHAPTER V 

A COMPARISON BETWEEN THE NON LINEAR BRANCH 

AND BOUND AND DYNAMIC PROGRAMMING 

General 

The transmission planning problem which was formulated in Chapter 

II can be solved by Dynamic Programming too—at least in theory. There 

are, however, many practical difficulties which will be investigated in 

this chapter. 

Dynamic Programming was originally developed by Richard Bellman. 

It is a powerful approach for solving multistage optimization problems. 

It has been applied extensively in many fields such as inventory theory, 

allocation problems, control theory, chemical engineering design, pro

duction scheduling, capital budgeting, and others. The approach has 

many advantages, some of which follow. 

(a) The problem formulation can be very general. 

Nonlinearities in the equations can easily 

be handled. 

(b) Variables can be discrete. 

(c) Constraints can be applied to both decision 

and state variables (constraints usually re

duce the computational burden instead of 

increasing it as opposed to many other 

optimization methods). 
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(d) Questions of the uniqueness of the solution 

are avoided. As long as the problem is 

feasible, the direct procedure guarantees 

that the optimum (within the rights of the 

model) will be found. 

(e) The optimal solution is obtained in a 

feedback form, i.e. optimal decisions are 

obtained for each admissible state of the 

system at each instant of time. 

The above features of Dynamic Programming make it suitable for 

solving multistage decision processes. Long range transmission network 

planning is a typical multistage decision process. Unfortunately, this 

problem is dimensionally large and application of Dynamic Programming is 

very difficult for the following reasons: 

1. Due to the large number of stages that 

have to be considered in the optimization 

process, a large amount of high-speed 

storage is required during the computations. 

2. The important problems of escalation of 

costs and construction lead time tend to 

increase the dimensionality of the problem. 

In the following, we will analyze the above two restrictive 

reasons in applying Dynamic Programming in long range transmission 

network planning. 
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Storage Requirements 

The transmission network planning problem can be considered as 

a sequential process of discrete control actions. This problem can be 

formulated to be solved by Dynamic Programming. The efficiency of the 

Dynamic Program depends strongly on the formulation. From this point 

of view the definition of the state of the system is very crucial. The 

most judicious definition for application of Dynamic Programming to the 

transmission planning problem has been the one in reference 16. This 

definition of the state of the system coincides with the one we have 

presented in Chapter II. Then the problem can be formulated as follows. 

(i) A system described by the equation of motion 

x(k+l) = x(k) + u(k) (I) 

where: 

x = Base case state matrix, LxM dimensioned 

M = number of rights of way 

L = number of discrete circuit types 

u = transition matrix, LxM dimensioned 

k = index of stage variable 

(ii) A variational performance criterion 

N - l N - l £ ( u ( k ) ) 
J = I v { I — T-T+ £,[x(k+l)fk+l]} 

k=0 (1+r) X=k (l+r)A 
( I I ) 
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where: 

J = total present worth cost 

I - annual investment cost plus interest of the transition 

% = operational cost 

r = annual interest rate 

(iii) Constraints 

ueu(k) (III) 

xeX(k) (IV) 

where: 

X(k) = set of admissible states at stage k 

u(k) = set of feasible transitions 

(iv) An initial state 

x(0) = C (V) 

Find: 

The state sequence x(l),x(2), . . . ,x(N) such that J in equation 

II is minimized, subject to the equation of motion I, the constraints 

III and IV, and the initial condition V. 

The basic difference between the above formulation and the one 

presented in Chapter II is that here the decision variables are the 

discrete states of the system while in Chapter II the decision variables 

are the discrete controls. 



The two formulations are equivalent since the sequence of con

trols (or transitions for the present formulation) {u(0),u(l), . . . , 

u(N-l)} can be obtained from the sequence of states {x(l), . . . ,x(N)} 

with the aid of the equation of motion I. 

The actual system equations and inequalities which determine if a 

state x(k) is admissible remain the same as in Chapter II. Therefore, 

the term admissible state will refer to a state which satisfies the 

definition of admissibility I or II (Chapter II). 

Dynamic Programming analyzes the multistage decision process 

into a series of single stage optimization problems. One of these 

single stage optimization problems can be stated as follows: Given a 

set of states X(k) at stage k and a set of states X(k+1) at stage k+1, 

find for each state of the set X(k+1) the optimal transition. 

It is obvious that solution of the above single stage optimiza

tion will require that the sets X(k) and X(k+1) be a priori known. 

And taking these arguments one step further for a N-stage problem, the 

set X should be given, which is defined as follows: 

X = X(1)UX(2)U . . . UX(N) (67) 

The size of the set X is very crucial because each element of the set X 

requires a large number of variables to be stored. And if the set X is 

large, then the storage requirements may be unbearable. 

The number of possible discrete states for a transmission network 

is mighty large. For comparison purposes, however, it will be beneficial 

to ask the following question: How many discrete states should be 
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included in the set X in order to establish equivalence between the 

planning problem solved by the method described in this thesis and by 

Dynamic Programming. The answer to the above problem is achieved by 

the following procedure. The N-stage transmission planning problem is 

solved by the method of this thesis where the fathoming procedure is 

relaxed. During execution the vertices are stored in N sets, one for 

each stage. This procedure will yield the sets V(1),V(2), . . . ,V(N) 

where V(k) is the set of vertices generated in stage k. It is obvious 

that the set V(k) can yield the set X(k) by consolidating the states 

associated with the set of vertices V(k). And finally, the set X is 

obtained from (67). 

The above procedure has been applied to a small network, namely 

the test system A (Chapter VII). The test system A is a 5-node, 7-

branch system. For even this small network the set X was large. 

Table V.l shows the results. 

Similar results for large networks are almost impossible to 

obtain because of the large number of discrete states in the set X. 

Then the storage requirements are tremendous and application of Dynamic 

Programming to the transmission network planning will require an 

enormous amount of fast storage devices. On the other hand, the non 

Linear Branch and Bound method alleviates the storage problem since it 

is only necessary to store, for each stage, a small set of controls which 

corresponds to a subset of X (see Separation, Chapter IV). 

In reference [16] the state of the system is defined with only one 

state variable. This variable is an identification one which identifies 

one network configuration from another. The storage problem is still 
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Table V.I.* Size of the Set X for 

Test System A (Five-Eus, Seven-Branch) 

Number of Stages Number of Discrete States 
in the Planning Period in the Set X  

3 177 
4 432 

* Parameter values used for the automatic generation of 
controls 

x = 0.95 x ^ = 0.20 
over cut 

Assumptions; 

1. At most one circuit per right of way and 
stage 

2. Only one type of circuit is used for 
expansion 



there since each network configuration, which is identified by one 

variable, requires storage space which depends on the size of the 

network. 

In summary, the application of Dynamic Programming to the trans

mission planning problem encounters the burden of excessive storage 

requirements. It is difficult to handle this problem with present 

computers. On the other hand, the non Linear Branch and Bound method 

has moderate storage requirements (Chapter IV). As a matter of fact, 

in core solutions can be obtained for even large networks (Chapter VII). 

Construction Lead Time 

In planning a transmission network, a decision to invest has to 

be made before the investment is actually needed. This is because some 

lead time is required to implement this decision. In this case the 

transition from one state to another is constrained. For example, if 

the transition from state x. to the state x. is decided in year k and a 
i 3 

lead time of X years is required, then 

x(t) = x., t = k, k+1, . . . ,k+X-l 

x(k+X) = x. (68) 

In this example it has been assumed that the construction lead time is 

always an integer number of stages and that once a specific transition 

has been decided, no other transition can be decided until the current 

transition has been terminated. 



Regarding this problem, the following observations are important: 

1. If each admissible state of the system is 

identified by one variable only, the equation 

of motion describes transitions from one state 

to another. On the other hand, it is impera

tive to consider as decision variables the 

admissible states of the system for a judicious 

formulation of the problem for application of 

Dynamic Programming. This fact has its impact 

which is described in the following observations. 

2. As long as the lead time for a transition is 

greater than one stage, there will be a set 

of constraints similar to (68). 

3. If the controls are considered as the decision 

variables of the problem, then the problem of 

lead time has automatically become independent 

of the planning problem. This is so because 

a sequence of controls can always be analyzed 

into a sequence of decisions. In this case 

the only constraint will be that a decision 

can not be made prior to the beginning of the 

planning period if it has not been made before. 

Therefore, the formulation presented in this 

thesis (Chapters II, III, and IV) automatically 

solves the lead time problem because it decouples 



it from the general planning problem. 

4. Constraints similar to (68) tend to increase 

the dimensionality of the problem. 

The above observations make it clear that in applying Dynamic 

Programming for the transmission planning problem extra developments 

are necessary if lead time is to be considered. In reference 16 two 

methods are proposed. One method increases the state space by arti

ficial states which correspond to the constraints (68) and then the 

solution is achieved with a usual Dynamic Program. The other method 

does not increase the state space, but requires that, at each stage k, 

the optimal expected returns at several posterior stages be known. 

Actually, those returns at stages k+l,k+2, . . . ,k+X+l where X is the 

largest lead time corresponding to a decision allowed in stage k. 

In conclusion, the inclusion of construction lead times in a 

Dynamic Program for the transmission network planning increases the 

dimensionality of the problem. On the other hand, the non Linear 

Branch and Bound method decouples the problem of lead times from the 

planning problem and therefore automatically solves the planning 

problem with construction lead times. 

Escalation of Costs 

In every planning task the escalation of cost is a very important 

factor. It has been the case and will always be that inflationary trends 

and changes in the economic environment in general bring about changes 

in the cost of the same resource. In a planning study it is desirable 

to evaluate the impact of the escalation of cost on the overall cost of 



expanding the system over a given period of time. 

In the general formulation of the problem, the various costs will 

be a function of the stage variable if escalation of cost is considered. 

The non Linear Branch and Bound can handle the problem automatically 

because it is basically an enumerative optimization algorithm. On the 

other hand, the usual Dynamic Program can not solve this problem unless 

certain modifications are made. As a matter of fact, it is easy to make 

a counterexample where the usual Dynamic Program may skip the known 

optimal trajectory if escalation of cost is present. 

As in the case of construction lead time, it is possible to 

modify the problem in order to account for escalation of cost. Here 

we propose two methods: 

1. The state variables of the system are increased 

by another vector, the vector of equipment age. 

Then two discrete states of the system can dif

fer by as little as the age of one equipment. 

In this case the transition cost from one state 

to another will incorporate any foreseeable 

escalation of cost. A usual Dynamic Program 

can solve the above problem. 

It should be emphasized, however, that the 

number of states increases drastically because 

of the introduction of the additional state 

vector. 

2. For each state, at a stage k, a set of values 



of the performance criterion should be stored, 

corresponding to all possible trajectories 

which take the system from the initial state 

to the present state. Each state will enter 

the next stage computations with a set of 

values of the performance criterion. 

Both proposed methods increase the dimensionality of the problem 

and may impose heavy storage requirements. 

It should be emphasized that the above two proposed methods lead 

in a natural way to the concept of a vertex, which has been introduced 

in Chapter IV. In a planning study a state of the system, defined by 

the existing equipment, is not a uniquely defined economic entity. 

The trajectory which brings the system from the initial state to the 

state under consideration may differentiate the economic cost of the 

system (performance criterion). The reason, of course, is the escalation 

of cost. Therefore, it is expedient in a planning study to consider a 

state of the system, not alone, but with the trajectory which creates 

this state from the initial state. This is the concept of a vertex 

(Chapter IV) from another point of view. 

In summary, the cost escalation case of the planning problem 

can be solved by Dynamic Programming. This, however, leads to further 

increase of the dimensionality of the problem. 

Conclusion 

Dynamic Programming is a powerful technique with unlimited 



theoretical possibilities. However, application of Dynamic Programming 

to the planning of a transmission network encounters huge practical 

limitations. For even small networks, an enormous number of states has 

to be accessible for computations at each stage. This number increases 

drastically with the number of stages in the planning period. On the 

other hand, researchers who have applied dynamic programming to network 

planning consider the problem of defining the admissible states of the 

system to be separated from the optimization problem. This thesis has 

shown that these two tasks should be coupled because very useful infor

mation for the determination of the admissible states can be obtained 

from the optimization method. Dynamic Programming is susceptible to 

application of this finding. 

Two important cases of the planning problem, the construction 

lead time and the escalation of cost cases can be handled by Dynamic 

Programming at least in theory. Modification of the definition of the 

state of the system will embed the general transmission planning 

problem into a problem solvable by Dynamic Programming. The dimension

ality of the problem is, however, further increased and the practicality 

of the application of Dynamic Programming for this problem is questioned. 



CHAPTER VI 

FORMULATION AND COMPUTATIONAL ASPECTS WITH EXACT 

POWER FLOW MODEL 

Introduction 

The formulation of the transmission planning problem, which was 

introduced in Chapter II with the equations I, II, III, IV, and V, is 

very general. The power flow model of the transmission network does not 

explicitly enter these equations. However, for purposes of computing 

the performance criterion (Equation II) and the set of admissible con

trols (Relation III) , it is necessary to compute the actual flow of 

power on the network. Kirchhoff's network laws describe the power flow. 

Solution of the power flow equations will giv the answer to the above 

problem. These equations are, however, non linear for networks opera

ting with alternating current. Historically, the exact solution is 

referred to as AC load flow. Many algorithms have been proposed for 

the solution of the AC load flow problem. Reference 21 presents a 

concise review of all these methods. All methods involve an iterative 

scheme, and therefore require considerable computing effort. For this 

reason, in Chapter II the AC load flow has been replaced with the DC 

load flow. The DC load flow is obtained from the AC load flow if 

certain approximations are introduced in the power flow equations. The 

name comes from the resemblance of these approximate equations to the 

Kirchhoff's equations for a network operating with direct current. DC 
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load flow solution is obtained from the simultaneous solution of a set 

of linear equations. No iterative scheme is required. For the above 

reason, the approximate DC load flow is preferred for planning purposes. 

In recent years, another method has been developed for the 

solution of the AC load flow problem. This method is known as the fast 

decoupled load flow (FDLF) and is published in reference 20. The impor

tant feature of this method is that, implementation wise, does not differ 

from the DC load flow. From the computational point of view, it is a 

few times slower than a DC load flow. The planning method of this 

thesis can be implemented with the fast decoupled load flow at minimum 

effort. 

In this chapter, the transmission planning problem is formulated 

with the exact AC load flow. The emphasis is put on the computational 

aspects. 

Formulation 

The general transmission planning problem is again formulated 

with the relations I, II, III, IV, and V, which are cited again. 

(i) A system described by the linear difference equation 

x(k+l) = x(k) + u(k) (I) 

(ii) A variational performance criterion 

N-l N-l £ (u(k)) 

J = I r- { I rT+ I [x(k+l),k+l]} (II) 
k=0 (1+r) X=k (1+r) 
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(iii) Constraints 

ueu(x(k),k+l) (III) 

xeX (x (k-1),u (k-1),k) (IV) 

(iv) An initial state 

x(0) = C (V) 

Find the control sequence u(0),u(l), . . . ,u(N-l) such that J 

in equation II is minimized, subject to the system equation (I) the 

constraint equations (III) and (IV), and the initial condition (V). 

The variables have been defined in Chapter II. 

In the above formulation, the following tasks require the 

solution of the power flow problem: 

1. Computation of the operational cost 

£2(x(k),k). 

2. Determination of the set u(X(k),k+l). 

3. Determination of the set X(x(k),u(k), 

k+1) . 

Since the set X(x(k),u(k),k+l) is uniquely determined from the set 

u(x(k),k+l) and the equation of motion I, it is only necessary to dis

cuss tasks 1 and 2. 

In the following sections, the fast decoupled load flow will be 
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presented, its similarities to the DC load flow will be explained and 

then the details of using the fast decoupled load flow in the above 

tasks (1 and 2) will be discussed. 

The Fast Decoupled Load Flow 

In recent years a highly efficient method for the solution of the 

AC load flow has been proposed [20]. It is an exact method for the 

solution of the power flow equations for a power transmission network. 

It is an attractive method because of the following reasons: 

1. It minimizes storage requirements. 

2. Its implementation is rather simple. 

3. The speed of convergence is slightly 

slower than the Newton-Raphson method 

but the overall solution speed is higher. 

The fast decoupled load flow can be best described with the well 

known Newton method which is an iterative algorithm for solving a set 

of simultaneous non linear equations in an equal number of unknowns. 

F(x) = 0 

where x is the vector of independent variables. In this case, the 

equations are the power flow equations which are derived from Kirchhoff's 

network equations. At a given iteration point, each function f. (x) is 

approximated by its tangent hyperplane. This linearized problem is 

constructed as the Jacobian-matrix equation. 
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F(x) = -J • Ax (69) 

which is then solved for the correction Ax. The square Jacofcian matrix 

J is defined by 

3f. 
1 

J.. = T — 
lk ax, 

k 

and represents the slopes of the tangent hyperplanes. 

The nodes of a power network are classified into three classes 

for load flow purposes: 

(a) PQ nodes where the externally injected real 

and reactive power are known. 

(b) PV nodes where the externally injected real 

power and the magnitude of the voltage are 

known. 

(c) Slack nodes (one in the system) where the 

voltage phasor is specified (magnitude and 

phase angle). 

Let IL be the number of nodes in the network and n the number of 

PV nodes. Then for the derivation of the fast decoupled load flow, the 

vector X is defined as follows: 

e 
x = 

v 
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where: 

0 is the vector of node voltage phase angles, 

dimension n, -1, and 

V is the vector of node voltage magnitude, 

dimension n, -n . 

The equations F(x) are 

P(8,V) = 0, ^"^ equations 

Q(8,V) = 0, nh~n equations 

where P. (8,V) = 0 is the total real power injected at node i, one for 

each node except the slack node, and Q. (8 ,V) = 0 is the total reactive 

power injected at node i, one for each PQ node. 

Then the Jacobian matrix equation can be written as 

P(6,V) 

Q(8,V) 

H N AG 

AV 

where: 

H = 

N = 

J = 

3P(0 rV) 
38 

3P(8 rV) 
3V 

3Q(0 rV) 

38 
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_ 3Q(6yV) 
L " ~~3V 

The elements of the submatrices N and J have a small relative 

value and therefore represent a weak coupling between the vectors P and 

V on one hand and Q and 6 on the other. These submatrices may be 

neglected yielding the two independent matrix equations: 

P(6,V) = -HA9 

Q(8,V) = -LAV 

A series of approximations to the matrices H and L, which are 

justified by the physical properties of the power systems, lead to the 

transformation of the above equations into the following: 

^ L = B - A 6 (70) 

2ISJQ. = B"AV (71) 

where: 

R» - 1 
Bik " z~ U*k) 

Xik 

B!. = - 7 B.. , (S. = set of nodes 1 1 , „ ik' I J , , keS. connected to 
node i) 



BV, = B' 
lk lk 

X., = equivalent reactance of the 
ik 

circuits between the nodes 

i and k. 

There are several logarithmic possibilities for the solution of the 

problem. The most efficient one involves successive solutions of (70) 

and (71). At the end of each solution [of (70) or (71)], the corres

ponding variable vector is updated (6 or V) and the maximum absolute 

mismatch 

d^a-l or |aJ2̂ L|) 

is computed. If the mismatch is less than a specified value, the al

gorithm is terminated. Figure VI.1 shows the flow diagram of the 

iterative scheme. 

Both matrix equations (70) and (71) contain a constant matrix, 

namely, B* and B". The solution of either equation is obtained by 

first computing the symbolic inverse of the matrix (Gaussian elimination, 

table of factors) and then by forward and back substitution on the 

driving vector 

tp(6'v)] or [g(6'V)] 
V V 

The convergence of the method is good. Typical real cases yield 



Formation of Triangulation of B' Matrix 

Formation of Triangulation of B" Matrix 

KP = KQ = 1 

C^pute [ZISJJL] 

Yes 
^IKP = 0 

Solve (70) and Update 0 

KQ = 1 

•<-

Compute tftiLZL, 

Solve (71) and Update V 

KP = 1 

Figure VI.1. Flow Diagram of the Fast Decoupled Load Flow. 
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accuracy in the order of 0.1 MVA in three iterations starting from a 

"flat" start [[8] = [0], [V] = [1]]. 

Computationally, the solution of the equation (70) is equivalent 

to the DC load flow. For comparison purposes, Table VI.1 presents a 

list of the tasks involved by the DC load flow and the fast decoupled 

load flow. The relative execution time for a 118 node system is given 

(data have been taken from reference 20). Assuming K=3, the execution 

of the fast decoupled load flow is 2.605 times longer than that of the 

DC load flow. 

Reactive Power Sources 

At the PV buses there are sources of reactive power. Their out

put is automatically adjusted in such a way that the voltage magnitudes 

remain constant. This control, however, is possible as long as the 

capabilities of the reactive power sources are not violated. In other 

words, the following constraints exist for PV buses 

Q m i n * Q. * Q m a X (72) 
i i i 

where: 

*i - actual injected reactive power at bus i 

1 - index for PV buses 

_min ^ a x 
^i ' 2^ - minimum and maximum capability of the 

reactive power source at bus i 

If in the final solution the above inequalities are violated at some 

bus(es), then the voltage magnitude can not remain constant at that 



Table VI.1. A Comparison Between the DC Load Flow 
and the Fast Decoupled Load Flow. 

Relative Execution Time* of the Tasks Involved in 
the Above Two Load Flow Methods (Data from Reference 
20). K is the Number of Iterations. 

DC Load Flow Fast Decoupled Load Flow 

Formation and 
Triangulation of B' 848 .848 

Formation and 
Triangulation of B" 

Calculation of [PA"] 
and Convergence Test 

.212 

.181K 

Solution of (70) and 
6 Update 

Calculation of [Q/V] 
and Convergence Test 

152 .152K 

.152K 

Solution of (71) and 
V Update 

,03K 

* For the IEEE test system (118 nodes). 



bus (at least at the specified level). Then this bus has to be 

converted into a PQ bus. 

From the planning point of view, it is necessary as the trans

mission capacity of the system expands, to expand the reactive power 

sources too. This problem is referred to as optimal VAR planning. The 

objective of the optimal VAR planning problem is to determine the loca

tion and the amount of controllable VAR sources in order that a given 

transmission network maintain adequate voltage levels and assist in 

optimal operation under normal and emergency conditions. 

Several solutions have been proposed for the optimal VAR planning 

However, since the cost of reactive power sources is few orders of mag

nitude smaller than the cost of the transmission facilities, it will be 

unwise to couple the VAR planning problem with the transmission planning 

problem. For this reason, we propose the following two approaches: 

1. Assume that at each PV node there is a controllable reactive 

power source of unlimited capacity. Then the voltage magnitude at this 

node will be constant and at the specified level. 

2. The performance criterion J (Equation II) is augmented with 

the following penalty function which basically represents the cost of 

controllable reactive power sources at the PV nodes. 

JVAR
 = I ̂ W ^^i^ii'' yaB(ya)ll) 

i m 

where: 

yli = Qf
)(e(ra),v(m), - Q f * 



y . = Q m i n - Q.(m)(9(m),V(m)) 
£* JL. A. Am 

Q. (0 ,V ) = reactive power necessary to maintain 

the voltage of node i at the desired 

level during outage m 

min jnax . , . . .,.. ^ ., 
Q. , Q. = minimum and maximum capability of the 

reactive power source at node i 

fl if y>0 
S(y) = < 

0 otherwise 

i = index of PV nodes 

m = 0,1,2, . . . ,M index for single outages (Chapter II) 

f. (x) = C.X 

C. = the annual investment cost plus interest for one unit 

of installed reactive power source at node i 

The former approach is straightforward. The latter requires single 

contingency analysis. This requirement, however, does not create any 

deviation from the planning algorithm of the Chapters II, III, and IV 

since single contingency analysis is performed anyway in order to 

establish the admissibility of a state. 

Computation of the Operational Cost I (x(k),k) 

Computation of the operational cost I (x(k),k) involves the solu

tion of the power flow problem at different load levels. The load 

duration curve during the stage is assumed to be known. R points are 

selected on the load duration curve. Each point specifies the demand on 
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the system. For this case, the outputs of the generation plants are 

known except that of the slack node. The load flow problem is solved 

and the losses are computed. This task is repeated for every selected 

point on the load duration curve. The total losses are computed as a 

weighted sum of the losses found in the above R solutions. The weights 

are defined as the duration of each load level during the stage. 

Therefore computation of the operational cost requires the solu

tion of R power flow problems. For comparison purposes, a listing of 

the computations required by the DC load flow and the fast decoupled 

load flow is given in Table VI.2. 

Determination of the Set of Admissible Controls with the Fast Decoupled 

Load Flow 

In Chapter III, the determination of the set u(x(k),k+l) has been 

described. We cite again the basic tasks involved: 

1. A single outage analysis which determines the 

set of the critically loaded circuits and 

critical outages. 

2. A detection scheme which determines the set 

of rights of way which are effective for 

network reinforcement. 

3. Construction of the controls based on the 

set of effective rights of way. 

4. The generated controls are checked with the 

optimality and feasibility conditions. Those 

which meet the above conditions form the set 



Table VI.2. Computational Requirements of the Operational 
Cost With the DC Load Flow and the Fast 
Decoupled Load Flow. 

DC Load Flow Fast Decoupled Load Flow 

Formation and 
Triangulation of B1 

Formation and 
Triangulation of B" 

Calculation of [P/Vl 
and Convergence Test 

Calculation of [Q/V] 
and Convergence Test 

R-K 

Solution of (70) R RK 

RK 

Solution of (71) RK 

Computation of Losses R R 
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u(x(k),k+l). 

The accuracy of the DC model is adequate for the detection 

scheme. Task number 3 does not involve a power flow. Therefore, only 

the single outage analysis and feasibility condition need to be formulated 

with the exact load flow. 

Single Outage Analysis and Feasibility Condition. The computations 

which are involved in the single outage analysis and the feasibility 

condition are similar since the feasibility condition is basically a 

truncated single outage analysis. For this reason, only the implemen

tation of the feasibility condition, with the exact power flow, will be 

discussed. The feasibility condition, in AC load flow notation, is 

written as follows: 

p(m)(9(m)(V(m)) = Q 

8 W « W , » W | = 0 

|pfV r a ),v ( m >) + jQ)[
m)(e(m),v(m))| <¥, <*<*>.»> 

meS 
c 

ZeS 
u 

where: 

S - set of critical outages 
c 

S - set of critically loaded circuits 
u 

Equations (73) and (74) are the power flow equations during outage m, 

(73) 

(74) 

(75) 



p(m)(e(m)^(m))+jQ(m)(e(m)^v(m)) ±g ^ ^ ^ f l o w i n g o n the c i r c u i t s of 

the right of way I, during outage m, and S (x(k),m) is the maximum per

missible power to flow on the circuits of the right of way £, during 

outage m. 

The computational problem at hand appears as follows: Given the 

state x(k) of the system at stage k, and a control u(k), the state of 

the system at stage k+1 is then uniquely defined by the equation I 

x(k+l) = x(k) + u(k) 

Does the state x(k+l) satisfy the relations (73), (74), and (75) at 

stage k+1? 

There are several algorithmic possibilities for this problem. 

Because the control u(k) involves only few circuit additions, we will 

base our discussion on the following algorithm. 

1. Form and triangulate matrices B' and B" 

of the system x(k). 

2. Use the well known matrix inversion lemma 

in the iterative scheme in order to obtain 

the solution e(m),V of the load flow for 

the system x(k+l) at stage k+1 and during 

outage m. 

3. Check inequalities (75). 

Table VI.3 lists the computations required for the feasibility 

condition by the DC load flow and the fast decoupled load flow. L is 
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Table VI.3. Computational Requirements of the Feasibility 
Condition With the DC Load Flow and the Fast 
Decoupled Load Flow. 

DC Load Flow Fast Decoupled Load Flow 

Formation and 
Triangulation of B' 

Formation and 
Triangulation of B" 

Computation of [P/V] 
and Convergence Test 

1 

M'K 

Solution of (70) 

Computation of [Q/V] 
and Convergence Test 

(L +2)M' 
u 

(L +1)M'K 
U 

M'K 

Solution of (71) 

Small Matrix 
Inversion M' 

(L +2)M'K 
u 

M'K 

NOTES: M* is the number of critical outages 

K is the number of iterations 

L is the number of circuits in the control u(k) u 



the number of discrete circuits in the control u(k). The table has 

been prepared in accordance with the above algorithm. This algorithm 

is similar to the one used in a planning program implemented with the 

DC load flow. It is efficient for the feasibility condition with the 

DC load flow but inefficient when the fast decoupled load flow is used. 

In this case, optimization of the algorithm is imperative. For this 

reason, Table VI.3 overestimates the augmentation of the computational 

requirements with the fast decoupled load flow. 

Conclusion 

The general transmission planning method which has been presented 

in Chapters II, III, and IV can be formulated with an exact load flow 

model instead of the approximate DC model. The most important implemen

tation details have been described and the additional computational 

requirements have been listed. The increase of the computational effort 

depends on required accuracy. An estimate of the relative computational 

effort increase for a given system and specified accuracy can be obtained 

from Tables VI.1, VI.2, and VI.3. 



CHAPTER VII 

PERFORMANCE EVALUATION 

General 

The described planning method of this thesis has been implemented 

and tested. The objective of the testing was to demonstrate the specific 

properties of the problem of power transmission network planning which 

lead to the present planning algorithm. From this point of view, the 

automatic generation of controls is very important. Detailed evaluation 

of this algorithm will be given. 

The developed computer program can accommodate a network as large 

as 100 nodes, and 200 branches. The planning period can be as long as 

ten stages. In-core solution of this program requires approximately 

74 K of core memory. For longer planning periods, the storage require

ments increase by 3.7 K per stage. 

Two test systems have been used for the evaluation of the planning 

algorithm. These systems and the associated data are presented in the 

next section. 

The Test Systems 

Figures VII.1 and VII.2 present the two test systems. Test 

system A has been taken from reference 15. It is a 5-bus, 7-branch 

system. The system is a model of certain parts of the Bonneville Power 

Administration transmission network. It is an "overall" system model. 

It consists of the main transmission arteries (230 kV and above) 



terminating at nodes that represent a number of geographically adjacent 

substations. Table VII.1 describes the state of the system at the 

beginning of the planning period and Table VII.2 the net power injec

tions at year one. The net power injections are assumed to grow at a 

5% annual rate. Finally, Table VII.3 gives the characteristics of the 

transmission lines. 

Test System B is the Georgia Power Company transmission system. 

Transmission lines operating at 230 kV and above have been retained. 

Figure VII.2 illustrates the system. Table VII.4 describes the state 

of the system at the beginning of the planning period, while Table VII.5 

lists the bus data for year one. It is assumed that the load at each 

bus increases at a 8.5% annual rate. Furthermore, it is assumed that 

in the third year of the planning period the generating capacity of the 

plant HATCH is increased by 800 MW. Similarly, during year five, the 

generating capacity of plant VOGTLE is increased at 850 MW. Finally, 

Table VII.6 lists the characteristics of the transmission lines. 
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50 0 kV line 

3«+5 kV line 

23 0 kV line 

Figure VII.1. Test System A. Network Graph. 



Figure VII.2. Test System B. Network Graph. 
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Table VII.1. Test System A. State of the System at Year Zero. 

Sending Receiving Length Type of 
Branch End Node End Node (miles) Line Quantity 

1 1 2 40.0 1 2 

3 3 

2 1 5 85.0 1 

3 

5 

2 

5 4 3 200.0 1 

3 

2 

1 

90.0 1 2 

2 1 

3 3 

3 2 4 90.0 1 

3 

2 

1 

7 4 5 170.0 1 

3 

2 

1 

100.0 1 3 

2 1 

3 3 
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Table VII.2. Test System A. Net Power 
Injections at Year One 

Net Injection 
Node (MW) 

2 -5000.0 

3 4000.0 

4 -1000.0 

5 -5000.0 



Table VII.3. Test System A. Properties of 
Transmission Lines Studied. 

Maximum Permissible 
Operating Impedance Real Power Flow 

Type Voltage (KV) (ft/mile) (MW) 

1 500.0 .0571+J.571 1200.0 

2 345.0 .0803+J.803 440.0 

3 230.0 .081+J.81 180.0 



Table VII.4. Test System B. List of Existing 
Transmission Lines at Year Zero. 

Type of Length 
Sending End Bus Receiving End Bus Line (Miles) 

PLANT BOWEN PLANT HAMMOND 230 kV 30.30 

PLANT BOWEN PLANT HAMMOND 230 kV 30.30 

PLANT BOWEN VILLA RICA 500 kV 28.44 

PLANT BOWEN NORCROSS 500 kV 45.65 

PLANT BOWEN EAST DALTON 500 kV 48.50 

PLANT BOWEN UNION CITY 500 kV 57.73 

PLANT BOWEN NELSON 43.00 

ADAMSVILLE EAST POINT 230 kV 6.55 

ADAMSVILLE PLANT MCDONOUGH 230 kV 5.87 

ADAMSVILLE DOUGLASVILLE 230 kV 17.33 

EAST POINT PLANT MCDONOUGH 230 kV 12.42 

EAST POINT VILLA RICA 48.00 

EAST POINT UNION CITY 230 kV 11.07 

EAST POINT UNION CITY 230 kV 11.07 

PLANT MCDONOUGH BOULEVARD 230 kV 10.45 

PLANT MCDONOUGH NORTHWEST 230 kV 4.64 

PLANT MCDONOUGH NORTHWEST 230 kV 4.64 

DOUGLASVILLE VILLA RICA 230 kV 10.75 

AUSTIN DRIVE KLONDIKE 230 kV 12.57 

AUSTIN DRIVE SCOTTDALE 230 kV 11.58 

KLONDIKE BONAIRE 500 kV 89.26 

KLONDIKE PLANT BRANCH 230 kV 64.41 

KLONDIKE NORCROSS 500 kV 27.38 

KLONDIKE CONYERS 230 kV 6.01 

KLONDIKE MORROW 230 kV 17.01 

KLONDIKE UNION CITY 500 kV 36.24 

KLONDIKE GRADY 230 kV 16.46 

SCOTTDALE BOULEVARD 230 kV 10.46 



Type of Length 
Sending End Bus Receiving End Bus Line (Miles) 

SCOTTDALE NORCROSS 230 kV 13.15 

BIO CENTER 230 kV 31.23 

CENTER WINDER 230 kV 22.30 

BONAIRE BUTLER 230 kV 43.53 

BONAIRE NORTH TIFTON 230 kV 75.98 

BONARIE SOUTH MACON 230 kV 34.65 

BONAIRE THOMASTON 230 kV 50.46 

BONAIRE PLANT BRANCH 230 kV 55.16 

BONAIRE EASTMAN 45.00 

BUTLER THOMASTON 25.00 

BUTLER FORTSON 230 kV 36.24 

BUTLER NORTH AMERICUS 230 kV 33.16 

NORTH TIFTON NORTH AMERICUS 230 kV 59.88 

NORTH TIFTON DOUGLAS 230 kV 41.45 

NORTH TIFTON PLANT HATCH 500 kV 82.96 

NORTH TIFTON PINE GROVE 230 kV 46.77 

NORTH TIFTON PLANT MITCHELL 230 kV 35.43 

SOUTH MACON PLANT BRANCH 230 kV 42.96 

THOMASTON PLANT YATES 230 kV 54.25 

THOMASTON SOUTH GRIFFIN 28.00 

BOULEVARD NORCROSS 230 kV 13.24 

BOULEVARD GRADY 230 kV 4.24 

PLANT HAMMOND ROCK SPRINGS 230 kV 46.33 

PLANT YATES MORROW 230 kV 35.15 

PLANT YATES UNION CITY 230 kV 23.42 

PLANT YATES UNION CITY 230 kV 23.42 

PLANT YATES LAGRANGE 230 kV 37.58 

VILLA RICA WEST MARIETTA 230 kV 20.85 

VILLA RICA UNION CITY 500 kV 30.16 

VILLA RICA PLANT WANSLEY 500 kV 26.50 



Type of Length 
Sending End Bus Receiving End Bus Line (Miles) 

VILLA RICA 

PLANT BRANCH 

PLANT BRANCH 

PLANT BRANCH 

PLANT BRANCH 

PLANT BRANCH 

PLANT BRANCH 

WEST MARIETTA 

EAST SOCIAL CIRCLE 

EAST SOCIAL CIRCLE 

EAST SOCIAL CIRCLE 

GOSHEN 

GOSHEN 

NORCROSS 

NORCROSS 

NORCROSS 

WADLEY 

WADLEY 

WADLEY 

WADLEY 

SOUTH GRIFFIN 

FORTSON 

FORTSON 

FORTSON 

FORTSON 

FORTSON 

GOAT ROCK 

GOAT ROCK 

NORTH AMERICUS 

NORTH AMERICUS 

WINDER 

MORROW 

BREMEN 

EAST SOCIAL CIRCLE 

EAST SOCIAL CIRCLE 

EVANS 

GOSHEN 

WADLEY 

WADLEY 

NORTH MARIETTA 

NORCROSS 

WINDER 

EAST WATKINSVILLE 

PLANT VOGTLE 

WADLEY 

WINDER 

NELSON 

PARKAIRE 

NORTH DUBLIN 

PLANT VOGTLE 

VIDALIA 

VIDALIA 

UNION CITY 

GOAT ROCK 

GOAT ROCK 

NORTH AMERICUS 

PLANT WANSLEY 

LAGRANGE 

COLUMBUS 1ST AVENUE 

COLUMBUS 1ST AVENUE 

EASTMAN 

PALMYRA 

CONYERS 

UNION CITY 

230 kV 22.00 

230 kV 40.42 

230 kV 40.42 

230 kV 72.73 

230 kV 78.46 

230 kV 57.27 

230 kV 57.27 

15.00 

230 kV 37.52 

230 kV 24.26 

230 kV 22.67 

230 kV 19.80 

45.00 

230 kV 28.35 

230 kV 34.97 

230 kV 10.88 

230 kV 37.94 

46.00 

230 kV 46.16 

230 kV 46.16 

230 kV 32.67 

230 kV 12.20 

230 kV 12.20 

230 kV 55.13 

500 kV 66.50 

230 kV 36.22 

230 kV 1.41 

230 kV 1.41 

70.00 

230 kV 33.33 

230 kV 27.57 

230 kV 11.72 



Type of Length 
Sending End Bus Receiving End Bus Line (Miles) 

MORROW UNION CITY 230 kV 11.72 

MORROW GRADY 230 kV 9.56 

DOUGLAS OFFERMAN 230 kV 46.92 

DOUGLAS PLANT HATCH 230 kV 46.22 

OFFERMAN PLANT HATCH 230 kV 38.42 

OFFERMAN PLANT MCMANUS 230 kV 38.80 

OFFERMAN PLANT MCMANUS 230 kV 38.80 

PLANT HATCH EASTMAN 230 kV 57.23 

PLANT HATCH VIDALIA 230 kV 22.99 

EAST DALTON ROCK SPRINGS 230 kV 27.50 

EAST DALTON CARTERS DAM 230 kV 22.35 

NELSON CARTERS DAM 230 kV 25.68 

PINE GROVE THOMASVILLE 230 kV 50.50 

NORTH MARIETTA PARKAIRE 230 kV 8.45 

EASTMAN NORTH DUBLIN 230 kV 32.57 

VIDALIA STATESBORO 230 kV 42.50 

PLANT MITCHELL THOMASVILLE 230 kV 43.69 

PLANT MITCHELL PALMYRA »-_._- 17.00 



Table VII.5. Test System B. List of Nodes, Load and 
Generating Capabilities in the First Year 
of the Planning Period. 

Bus Type Bus Load (MW) Gen. Type 
PGMIN 
(MW) 

PGMAX 
(MW) BGEN CGEN 

1 PLANT BOWEN 0.0 STEAM 200 1400 1.25 .00536 

0 ADAMSVILLE 18.2 

0 EAST POINT 336.4 

1 PLANT MCDONOUGH 0.0 STEAM 100 774 1.4 .0065 

0 DOUGLASVILLE 130.3 

0 AUSTIN DRIVE 56.5 

0 KLONDIKE 2.7 

0 SCOTTDALE 186.3 

0 BIO 118.9 

0 CENTER 166.1 

0 BONAIRE 294.7 

0 BUTLER 21.6 

0 NORTH TIFTON 52.2 

1 SOUTH MACON 236.4 STEAM 50 190 1.5 .009 

0 THOMASTON 120.4 

0 BOULEVARD 318.9 

1 PLANT HAMMOND 436.0 STEAM 200 800 1.4 .006 

1 PLANT YATES 0.0 STEAM 200 1250 1.26 .0055 
Ul 



Bus Type Bus Load (MW) 

0 VILLA RICA 0.0 

1 PLANT BRANCH 0.0 

0 WEST MARIETTA 145.2 

0 EAST SOCIAL CIRCLE 93.5 

0 EVANS 143.3 

0 GOSHEN 166.4 

0 NORCROSS 432.7 

0 WADLEY 127.1 

0 SOUTH GRIFFIN 116.9 

0 FORTSON 81.0 

1 GOAT ROCK 100.0 

0 NORTH AMERICUS 114.5 

0 WINDER 138.6 

0 COLUMBUS 1ST AVENUE 131.7 

0 CONYERS 91.5 

0 MORROW 272.9 

0 DOUGLAS 71.8 

0 OFFERMAN 82.4 

1 PLANT HATCH 18.3 

0 EAST DALTON 145.3 

0 NELSON 80.8 

PGMIN PGMAX 
Gen. Type (MW) (MW) BGEN CGEN 

STEAM 200 1540 1.23 .005 

HYDRO 50 180 

NUCLEAR 200 800 

in 
CO 



Bus Type Bus Load (MW) 

0 PINE GROVE 85.8 

0 UNION CITY 16.7 

0 NORTH MARIETTA 90.3 

0 EAST WATKINSVILLE 75.1 

0 EASTMAN 12.7 

0 NORTH DUBLIN 57.8 

1 PLANT VOGTLE 0.0 

0 GRADY 278.5 

0 ROCK SPRINGS 75.6 

0 VIDALIA 142.1 

0 NORTHWEST 315.0 

1 PLANT MCMANUS 102.9 

1 PLANT MITCHELL 0.0 

0 THOMASVILLE 16.7 

0 PALMYRA 65.5 

0 PARKAIRE 167.5 

1 PLANT WANSLEY 0.0 

0 BREMEN 31.0 

0 LAGRANGE 114.1 

0 STATESBORO 78.4 

1 CARTERS DAM 0.0 

PGMIN PGMAX 
Gen. Type (MW) (MW) BGEN CGEN 

COMBUSTION 50 351 1.99 .0099 

STEAM 50 271 1.8 .0075 

STEAM 50 288 1.75 .0075 

STEAM 100 884 1.34 .0056 

HYDRO 50 250 



Table VII.6. Test System B. Properties of the 230 kV 
and 500 kV Transmission Lines Used by the 
Georgia Power Company. 

Type 
Operating 
Voltage 

Resistance 
Per Mile 

Reactance 
Per Mile 

Maximum 
Permissible 
Power Flow 

1 

2 

500 kV 

230 kV 

.00001292* 

.000152* 

.00021141* 

.001432* 

14.00* 

5.00* 

* Per unit values 

Base System 

Power: 100 MVA 

Voltage: The operating voltage 



The Automatic Generation of Alternatives 

The automatic generation of alternatives algorithm generates the 

set of controls which will enter the optimizing algorithm. The succes

sful application of the non Linear Branch and Bound depends on the 

following two specific properties of the automatic generation of 

controls algorithm: 

1. The algorithm requires minimal computational effort 

2. The number of generated controls which are 

qualified to enter the optimization algorithm 

is small. 

For the purpose of demonstrating the above properties of the 

algorithm, it is expedient to analyze the automatic generation of alter

natives algorithm into subtasks and evaluate each subtask separately. 

Figure VII.3 illustrates the various subtasks and their relation to the 

rest of the planning algorithm. The results of the evaluation are 

presented in the next sections. 

For the test cases and regarding the construction of controls, 

given the effective rights of way for network reinforcement, the 

following assumptions have been used: 

1. At most, one circuit per right of way and 

per year (stage) is allowed in a control. 

2. A control (alternative) may be constructed 

with circuits of only one type. 

Assumption 1 is a generally acceptable constraint for real systems. 
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Figure VII.3. Block Diagram of the Automatic Generation 
of Controls Algorithm. 
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Assumption 2 is a simplification which has been taken for practical 

reasons. 

Critically Loaded Circuits and Critical Outages 

The first task in the automatic generation of alternatives 

algorithm is the determination of the critically loaded circuits and 

critical outages. A single outage analysis is employed to this purpose. 

Specifically, given the state of the system at stage k, x(k) , and the 

power injections on the system at stage k+1, the following relationship, 

are checked (Chapter III) 

Y(m,(x(k)) • e("° =P(0,(k+l) (46) 

,, W |. |6 (»><»> i < ? i ( x ( k ) . m ) (47) 

m = 0,1, . . . ,M 

I = 1,2, . . . ,M 

where x is a parameter with value less than one. over 

The result of the above analysis will be the set S of rights of 

way with critically loaded circuits and the set S of critical outages. 

Normalized measures of these results are defined as follows: 

Number of Rights of Way with Critically Loaded Circuits 
Pu " Total Number of Rights of Way * 

Number of Critical Outages 
c Total Number of Rights of Way * 
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The dependence of the quantities p and p on the parameter 

x and the stage variable is illustrated in Figures VII.4, VII.5, 
over 

VII.6, and VII.7 for the two test systems. It is obvious that only a 

small percentage of the existing circuits may reach a loading level 

close to the permissible loading level. Of course this loading level 

may never be reached if the corresponding outage, which causes this 

loading, did not occur during the stage. On the other hand, only a 

small percentage of the outages are critical. 

The above two experimental facts have the following impact in 

planning algorithms: 

1. The stage to stage expansion of the transmission 

network is directed towards reinforcement of only 

a few circuits. 

2. The majority of the constraints which define an 

admissible state [see definition of state admis

sibility, Chapter II] are ineffective. Only a 

small percentage of these are effective or close 

to being effective. 

Later in the algorithm the controls are checked for admissibility. 

The admissibility of a control u(k) is checked with the feasibility con

dition (Chapter III). The feasibility condition consists of those 

constraints which correspond to a critically loaded circuit or to a 

critical outage. We shall call these constraints the working constraints. 

Let p be defined as follows: 



Number of Working Constraints 
w Total Number of Constraints 

(75) 

Figure VII.8 illustrates the quantity p as a function of x 
* w over 

and the stage variable k for the test system B. The value of the 

quantity p signifies the relative computational effort in order to 

determine the feasibility of a state (or alternatively, the feasibility 

of a control). The extremely low values of p demonstrate the efficiency 

of the automatic generation of controls algorithm. 
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Figure VII.4. Test System A. Portion of Rights of Way 
With a Critically Loaded Circuit as a 
Function of the Parameter x and Stage 
„ . . . over 
Variable. 
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Figure VII.7. Test System B. Portion of Circuit Outages Which 
Are Critical as a Function of the Parameter x 
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Figure VII.8 Test System B. Portion of Constraints 
Which Are Included in the Feasibility 
Condition as a Function of the Parameter 
x and the Stage Variable. 
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Detection of the Effective Rights of Way for JTetwork Reinforcement 

The next task in the automatic generation of alternatives is 

the determination of those rights of way which are effective for net

work reinforcement. The detection scheme (I or II) is employed. A 

normalized measure of the outcome is defined as follows: 

_ Number of Effective Rights of Way for Network Reinforcement 
Pe " Total Number of Rights of Way ^76* 

The dependence of this quantity on the parameter x and x and the 
over cut 

stage variable is illustrated in Figures VII.9 and VII.10. Only a small 

portion of the total number of rights of way is effective for reinfor

cing the critically loaded circuits. This fact demonstrates the network 

coherency as has been defined in Chapter III. By comparing Figures 

VII.9 and VII.10, it should be concluded that coherency is more profound 

in realistic transmission networks. Or, to put it in another way, test 

system A forms one coherent region. Detection scheme II yields higher 

values of p , as is expected. For networks similar to test system A 

(one coherent region), detection scheme I is adequate in the sense 

that it yields the same set of effective rights of way as detection 

scheme II. For realistic networks, however, this is not true. The 

reason is that for realistic networks the sensitivity coefficients 

^prefault a n d (ByT"*postfault m a y co*sid^ably differ. Furthermore, 

it has been observed that for the test system B the use of the detection 

scheme II yields the optimum with even higher values of the parameter 

x [x 0.90]. 
cut cut 



Detection scheme II can be used with high values of x while 

detection scheme I should be used with low values of x . It is 
cur 

recommended that the use of detection scheme II should be preferred 

for realistic networks. 

In Chapter IV the question of cptimality of the overall planning 

procedure of this thesis was analyzed. It was shown that the overall 

planning procedure is globally optimal if the automatic generation of 

controls algorithm generates all possible controls. The set of all 
possible controls for a stage k is denoted by S (k). The automatic 

a 
generation of controls algorithm, however, generates a smaller set of 

controls, namely S, (k). The size of the set S (k) depends on the 

parameter x and x .. It is obvious that the set of controls over cut 

(S (k) - S (k)) has been left out of the optimizing algorithm. The 
a D 

question is if this truncation of controls jeopardizes the optimality 

of the overall planning algorithm. For the test system A, the global 

optimum is known. For this system, the planning algorithm of this thesis 

yielded the known global optimum for considerably high values of the 

parameters x and x [x , = 0.98, x = 0.80]. This fact over cut over cut 

demonstrates the perfection of the detection scheme and the automatic 

generation of controls algorithm in general. A quantitative indicator 

of the merit of the detection scheme has been defined in Chapter IV. 

It is cited again: 

N 
Ps = J

5- (66) 
a 
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where: 

N - number of controls in the set S (k) . 
a a 

N - number of controls in the set S (k) - S, (k) 
s a b 

which satisfy the feasibility and optimality 

conditions. 

Figure VII.11 illustrates the dependence of the quantity p on 
s 

the parameters x and x ^, and the stage variable k. It can be con-c over cut 

eluded that only a small number of controls are left out of the optimizing 

algorithm because of the detection scheme. This number is 

n (k) = p (k) • N 
c rs a 

Then, on the average, the projected number of trajectories which will be 

left out because of the detection scheme is: 

n - n n (k) 
t k C 

On the other hand, the total number of trajectories is 

\ - «a>N 

With the assumption that each trajectory t has equal probability of being 

the optimal, the quantity 

n 
p = l - i t l - I I p ( k ) 

"T k S 



expresses the level of confidence that the planning algorithm will yield 

the global optimum. This is a hypothetical interpretation of the results 

A rigorous interpretation will require a complete enumeration of the 

trajectories. 

Filtering of the Controls 

Once the effective rights of way for network reinforcement have 

been determined, the construction of the controls is performed. These 

controls are checked with the feasibility and optimality conditions. 

The controls which satisfy the above conditions will enter the optimi

zing algorithm. The effectiveness of the above two conditions is 

reflected in the following normalized quantity. 

Number of Controls Which Satisfy Feasibility 
and Optimality Conditions  

pa Number of Generated Controls 

Figure VII.12 illustrates the dependence of the quantity p on the 
a 

parameter x and x , and the stage variable for the test system A. over cut 

Figure VII.13 shows the same variation of the quantity p for the test 
a 

system B and the number of generated alternatives. Even if this number 

is quite large, the number of alternatives which will enter the optimi

zing algorithm is very small. This fact justifies the use of an 

enumerative optimization algorithm for the transmission planning 

problem. 
The extremely low values of the quantity p at stages close to 

a 

the end of the planning period, are mainly caused by the optimality 

condition. 
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Figure VII.11. Test System A. Dependence of the Quantity p 
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The Non Linear Branch and Bound 

Efficiency is the main criterion for the evaluation of the non 

Linear Branch and Bound method. In Chapter IV an efficiency index (E.I.) 

has been defined for this optimization algorithm. The definition is 

cited again: 

Number of Times the Automatic Generation 
of Controls Was Called . . 
Total Number of Vertices 

It is, however, difficult to compute the efficiency index because the 

total number of vertices is never known unless a complete enumeration of 

the vertices is made. A complete enumeration is practically impossible. 

For this reason the total execution time of the planning algorithm is 

used as an efficiency index. 

The effect of the optimality condition, the starting upper bound, 

and the optimal ordering of alternatives on the total execution time, is 

tabulated in Table VII.7 for the test system A and for several values of 

the parameters x and x . The dependence of the execution time on 

the optimality condition is very profound. The use of starting upper 

bound considerably decreases the total execution time. And finally, the 

optimal ordering of controls has a small influence on the total execution 

time. 

Similar results for the test system B require a tremendous amount 

of computer time. For this reason such results are not available. 

The performance of the non Linear Branch and Bound method with 

respect to the number of stages in the planning period and the parameter 



Table VII.7. Test System A. The Effect of (a) Optimal 
Ordering of Controls, (b) Optimality Con
dition, and (c) Starting Upper Bound on 
the Total Execution Time for Various 
Values of the Parameters x and x 

cut over 

Optimal Starting 
x x Ordering Optimality Upper Execution 

over Q f C o n t r o l s Condition Bound Time (Sec)* 

0.2 0.94 YES YES YES 7.261 
0.2 0.94 YES YES NO 11.633 
0.2 0.94 YES NO YES 41.283 
0.2 0.94 YES NO NO 42.014 
0.2 0.94 NO YES YES 8.021 
0.2 0.94 NO YES NO 11.803 
0.2 0.94 NO NO YES 34.129 
0.2 0.94 NO NO NO 39.907 
0.2 0.96 YES YES YES 5.37 
0.2 0.96 YES YES NO 7.328 
0.2 0.96 YES NO YES 18.106 
0.2 0.96 YES NO NO 17.696 
0.2 0.96 NO YES YES 6.089 
0.2 0.96 NO YES NO 7.406 
0.2 0.96 NO NO YES 16.775 
0.2 0.96 NO NO NO 18.614 
0.4 0.94 YES YES YES 4.417 
0.4 0.94 YES YES NO 5.003 
0.4 0.94 YES NO YES 9.19 
0.4 0.94 YES NO NO 9.39 
0.4 0.94 NO YES YES 3.921 
0.4 0.94 NO YES NO 4.51 
0.4 0.94 NO NO YES 10.792 
0.4 0.94 NO NO NO 9.745 
0.4 0.96 YES YES YES 2.684 
0.4 0.96 YES YES NO 2.777 
0.4 0.96 YES NO YES 4.999 
0.4 0.96 YES NO NO 3.755 
0.4 0.96 NO YES YES 2.573 
0.4 0.96 NO YES NO 2.294 
0.4 0.96 NO NO YES 4.161 
0.4 0.96 NO NO NO 4.577 

* 
CYBER 74 
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x is illustrated in Figures VII.16 and VII.17. The size of the set 

S is very sensitive to the value of the parameter x and the number 

of years in the planning period. 
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Figure VII.14. Test System A. Execution Time in Seconds 
as a Function of the Parameter Xc and 
the Number of Stages in the Planning Period. 
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Stage by Stage Optimization Versus Long Range Optimization 

The planning algorithm of this thesis can yield the stage by 

stage optimum to a transmission planning problem as well as the N-stage 

optimal trajectory. Table VII.8 tabulates the results which have been 

obtained with test system A. There is a profound difference between the 

stage by stage optimum and the N-stage optimum. This difference mainly 

stems from the economy of scale. 

The Impact of Operational Controls to the 

Planning of Transmission Networks 

In Chapter II, the admissibility of a state was defined in two 

alternative ways. The first one does not recognize operational controls 

while the second one takes into account one form of operational control, 

the corrective rescheduling of the generator outputs (see Chapter II). 

Test system A has been used for an evaluation of the impact of 

corrective rescheduling to the planning of transmission networks. It 

has been assumed that the generator outputs at nodes 1 and 3 can change 

by as much as five per cent if necessary. Then the problem of planning 

the expansion of the system was solved twice. Once using the definition 

of state admissibility I and then using the definition of state admis

sibility II. The procedure was repeated for various lengths of the 

planning period. The results are tabulated in Table VII.9. It is 

obvious that the practice of corrective rescheduling reduces the cost of 

expanding a transmission network by a considerable amount. 

Conclusions 

The various specific properties of the transmission planning 
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Table VII.8. Test System A. Comparison Between 
the Stage by Stage Optimal Trajectory 
and the N-Stage Optimal Trajectory 

Number of Years 
in the Planning 

Period 

Performance Criterion of 
Optimal Trajectory*(in $1000) 
Stage by Stage N-Stage Per Cent Change 

5 222303.51 191877.78 15.85 

6 275389.06 236434.10 16.47 

7 341249.25 278620.94 22.47 

Two types of circuits (345 kV and 500 kV transmission lines) have 
been used for the expansion of the transmission network. 
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Table VII. 9. Test System A. Impact of 
Corrective Rescheduling 
Practices to the Planning 
of Transmission Networks. 

Number of Years 
in the Planning 

Period 

Performance Criterion of 
Optimal Trajectory (in $1000) 

I* II** Per Cent Change 

5 191877.78 186761.97 

6 236434.10 227352.03 

7 278620.94 269305.95 

2.739 

3.994 

3.458 

* Definition of State Admissibility I (Chapter II) has been used. 

** Definition of State Admissibility II (Chapter II) has been used, 



problem have been demonstrated. These properties influenced the develop

ment of the planning algorithm of this thesis. Specifically, the 

existence of the coherency in realistic transmission networks which was 

claimed in Chapter III becomes obvious from the results of the detection 

schemes. The automatic generation of controls algorithm generates a 

fairly large number of controls. The number of controls can be controlled 

by the parameters x and x ^. The size of the optimization problem 
over cut 

to be solved is therefore determined by the parameters x and x 
over cut 

From the computational point of view, the present planning 

algorithm is efficient. This is so because the majority of the generated 

controls do not meet feasibility and optimality conditions and therefore 

the number of controls which will enter the optimizing algorithm is 

small. This fact justifies the use of an enumerative optimization 

method for the problem of transmission planning. 

For the above reasons, the non Linear Branch and Bound method 

is very efficient. Reasonable execution times are obtained for even 

larger systems. A set of competitive expansion plans may be obtained 

for post optimality analysis at the expense of longer execution time. 

Finally, the impact of operational controls on the planning of 

transmission networks is important. Significant reduction of the cost 

of expanding transmission networks over a long range is achieved with 

the application of a particular operational control, the corrective 

rescheduling of the generators outputs. 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This thesis has presented the successful application of an enum-

erative approach to a large discrete optimization problem. The problem 

is the planning of an electric power transmission network over a long 

period of time. In general, this problem can be formulated as a discrete 

time deterministic optimal control problem. The controls or alternative 

ways to expand a transmission network are discrete because of standardi

zation of transmission facilities. The optimal trajectory is obtained 

by a non Linear Branch and Bound method. This method has been developed 

from an enumerative procedure. 

In general, the controls are numerous. The solution space (space 

of trajectories) contains an insurmountable number of elements. For 

this reason, the transmission planning problem is a huge computational 

one. The computational burden is alleviated with the following actions. 

1. A simple optimality condition is generated by the opti

mizing algorithm. This condition is very effective in disqualifying 

the majority of the discrete controls with minimal computations. A 

control is disqualified if it can be proven that it does not belong 

to the optimal trajectory. 

2. The size of the problem is reduced by taking advantage of 

specific properties of the transmission planning problem. In particular, 



this problem exhibits the following properties: 

(a) Network coherency (Chapter III). 

(b) The transmission planning problem can be 

viewed as capacity expansion in order to 

reinforce circuits which become overloaded 

or close to being overloaded as demand 

increases. 

The above properties provide the basis for the automatic genera

tion of alternatives algorithm which, given the state of the network at 

some stage, generates a subset of the set of all possible controls for 

expanding the network for the next stage. In this way a subproblem is 

defined. The optimizing algorithm will yield the optimal trajectory to 

the subproblem. It has been shown, however, that the defined sub-

problem is equivalent to the complete problem with very high probability. 

In this sense the automatic generation of controls is successful. 

The success of the non Linear Branch and Bound method stems 

from the fact that the bounds of the return function are computed at 

the beginning of the algorithm. Enumeration of the feasible trajec

tories is then limited between these bounds. The process continues with 

always better estimation of the bounds until the optimal trajectory is 

isolated. 

The overall planning procedure has the following advantages: 

(a) The storage requirements are low. As a matter of fact, in-core 

solutions can be obtained for even large networks, (b) It yields the 

global optimum with high level of confidence, and (c) The execution 



time is reasonable. 

Another advantage of the method is the fact that it is very 

flexible in accepting any mathematical model of the transmission net

work. Therefore, the accuracy of the results is controllable. To 

demonstrate this flexibility two different power flow models for the 

transmission network have been used as well as two different definitions 

of state admissibility. The power flow model determines the accuracy of 

the computations while the definition of state admissibility reflects 

the operational practices of the particular company. 

Recommendations 

In general, a planning procedure can be divided into three phases: 

1. Principal planning phase 

2. Advanced planning phase 

3. Project planning phase 

The objective of the first phase is to isolate a number of solu

tions to the planning problem which are feasible and which are economical. 

The advanced planning phase involves detailed evaluation of the solutions 

produced in the previous phase. And finally, human decisions will carry 

out the project planning phase. 

The contribution of this thesis is directed to the principal 

planning phase. This phase can be formulated as an optimization problem. 

Because of the complexity of operation of power systems, it is recom

mended that the mathematical model of the system should reflect the 

operational practices of the system under consideration. Furthermore, 



it is the belief of the writer that, in this planning phase, a less 

accurate mathematical model of the system can be used, given that the 

optimization problem will yield all the solutions which lie in a 

specified neighborhood of the optimal. In this case, the errors 

introduced by a simplified mathematical model can be detected and 

corrected in the advanced planning phase. 

A controversial issue in a planning study is the length of the 

planning period. From another point of view, the same issue can be 

stated as: for how long in the future a present decision will have a 

sound economic impact on the system. The issue is complex and the 

answer depends on the system, the rate of demand increase, and the 

economic environment. Furthermore, the following facts increase the 

complexity of the problem: (a) there is uncertainty in the load fore

cast, (b) there is uncertainty in the future economic environment, and 

(c) research and development introduces innovations. 

The planning method of this thesis can solve the following re

lated problem. Determine the minimum value of N (number of stages in 

the planning period) which does not affect the first stage decision. 

To solve this problem the solution to the transmission planning problem 

for different values of N should be obtained and then the minimum value 

of N which does not affect the first year decision can be obtained by 

inspection. This process yields values of N in the neighborhood of 

three to five years. Based on this evidence, we recommend that a 

planning period in the neighborhood of ten years will be sufficient in 

most cases. 

The uncertainty in the electric power demand and the cost has 



been neglected in the work of this thesis. Inclusion of this uncer

tainty in an enumerative optimization process is straightforward. 

However, in view of the fact that forecasting methods have advanced to 

the degree of predicting the electric power demand for several years 

in the future and with small deviations, it is recommended that the 

uncertainty should be taken into account in the advanced planning 

phase. 



APPENDIX A 

In Chapter II the corrective rescheduling problem has been 

formulated as follows: 

T T 
Minimize AC = B p o + (AP̂ ,) CAP . subject to (39) 

\j *J Lr 

, . Z$lm) (P_) T 

l*i + (
 9p

 ) A P G ' i * £<
x ( k )' m ) * = lr2, . . . ,M (40) 

£ AP = 0 i = 1, . . . ,n (38) 
i 

AP . < AP„ < AP (41) 
m m — G — max 

The solution to the above problem, if it exists, can be found 

with a standard quadratic program. For planning purposes, however, it 

will be impractical from the computational and storage point of view. 

On the other hand, it has been observed that in most cases only one 

"soft" constraint is violated or few of them in the worst cases. The 

majority of the inequalities (40) are ineffective and a tremendous re

duction of the problem is achieved if the ineffective constraints are 

neglected. This logic leads to the following suboptimal algorithm. 

1. Let S represent the subset of the constraints (40) which 

are effective. 

2. Let p. be the participation factor of the generation plant 
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i. These factors are determined externally according to the generating 

margins and incremental fuel cost. 

3. Define 

3*f' (PG> 
si = I — g ^ / i = 1,2,3, . . . ,n ieS Gi 

c.r. 

Set 

s.p.f a if s. > 0 
l i I 

Ap^-Gi 
s.p.a otherwise 
l i 

i=l,2, . . . ,n 
g 

p. is the participation factor 

+ 
f ,ot non-negative constant to be 

9 

determined. 

+ 
5. Compute the constant f from equation (38). If no value for 

f can be defined, the algorithm terminates. If yes, proceed to the 

next step. 

6. The constraints 

. , a+.<m) (pr) T 
1*1 + '"IP- ' A PG' i V X ( k ) ' m ) ' i£Sc.r. 

G 

AP . < AP < AP 
m m G max 



contain only one unknown, the constant a. If there is not a value of a 

such that it satisfies the above constraints, the algorithm terminates. 

If there is one or more values of a satisfying all the constraints, then 

let a* be their minimum. 

7. The solution is 

if s. > 0 
1 

otherwise 

The described algorithm is simple and very fast. The objective, 

minimization of the incremental cost AC, can be taken into account in 

the participation factors p.: 

if generating plant i is 
participating in the cor
rective rescheduling 

otherwise 

Since in the search of solution, only the effective constraints were 

considered, it is possible that the new generation schedule may force 

other "soft" constraints to be violated. It is, therefore, necessary to 

check the solution. The load flow problem is solved with the new vector 

of power injections and the "soft" constraints are checked. If they are 

satisfied, the corrective rescheduling was successful. 

The computation of the derivatives 

Gi 

s.p.f a* 
l i 

-s.p.a* 
I l 

P.=< 

1 
3 AC 
8P Gi 



Gi 

is rather straightforward. According to the DC-model, the power flow, 

when the highest capacity line from the right of way m is removed, is 

described by 

Y(m)(x(k))6(m) - P - PL 

Differentiating both sides, we obtain 

Y(m,(x(k))de(m) =ap G 

since Y (x(k)) and P are constant. Then, 
LJ 

de(ra) = [ y W i x f t l l l S 

Assume 

dPG = z • d P G . 

where Z is a vector defined as follows: 

|1 if j = i 
Z . = 
3 0 otherwise 



Then 
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de(m) = [ y<m) ( x ( k ) ) rl z . ^ 
Gi 

Since 

it follows 

. (m) T (m) 

d6^ = e£d8 = e£[Y (x(k))] Z • d?Gi 

and therefore 

34 

3P 

(m) 

^=eT[Y(m,(x(k))]-1Z 
Gi 
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APPENDIX B 

In this appendix an expression for the derivative 

»_h 
3Vi 

is derived. A reciprocity type relation will be proved and used in the 

computation of the effectiveness ratio vector. 

The DC load flow equations are in matrix notation 

Y6 = P (Bl) 

The power injections vector P is assumed to be constant. Differentiating 

both sides of the equation (Bl) , we obtain 

Y • d8 + dY • 6 = 0 

or 

d0 = -Y~ • dy • 6 

If the "capacity" of the i right-of-way has only changed by dy., then 

T 
dY = e.e. • dy. 

l i l 



where 

-k 

if the right of way i 
terminates at buses k 
and n. 
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-n 

Then 

-1 T 

ae = -Y e.e. 
1 l 

9 • dy, (B2) 

Since 

h - h - e£e 

d<^ = e£d6 (B3) 



S u b s t i t u t i n g (B2) i n t o (B3) , we o b t a i n 

T - 1 T 
d<t>„ = -e„Y e . e . 6 • dy . rl I 1 1 Jx 

3 * £ T - 1 TQ 

•+ -z— = - e Y e . e . 6 
3y. 1 1 J i 

T 
Since \b. = e. 6 , it follows ri I 

s*i - i 

The quantity A = e Y e. is dependent only on the system's parameters. 

ip. is the phase angle difference across the right of way i, which is a 

function of the power injections at the nodes of the network. Therefore, 

the derivative 

3y. 

can be factored as follows: 

3** a , 

wr= -Am ' +i 
i 

* 
If matrix Y is symmetric, then 

* 
Matrix Y is symmetric for almost all power networks 



Since 

A„ . = A.„ 
£i ifc 

-A U * i 3 y i 

and 

It follows 

- it " * £ By, 

+i 3y± 

9(J,i 

9YT 
(B4) 

The above relationship may be recognized as the reciprocity theorem in 

the networks. It can be used to speed up the computations of the ef

fectiveness ratio vector which is defined in Chapter III. The definition 

is cited below. 

E.R.V. = 

8 * * , 2 

'** , 2 

* x.d. 

i = 1,2, . ,M 



From (B4),we obtain 

Then 

9<f>„ *. 3*. 

sy,- *„ 9 Y, 
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E.R.V. = 
3d> 
A ^2 

T — x.d. 
3y£ x i 

i = 1,2, . ,M 

The above vector can be computed with only one forward and back 

substitution. 



APPENDIX C 

In Chapter II, the generation scheduling problem was defined as 

a mixed optimization problem. The statement of this problem is: 

Minimize Z = £ f.(P.), subject to (24) 

D 3 3 

f. (P.) = a. + b.P. + c.P2 (25) 
3 3 3 3 3 3] 

P m i n < P. < P m a x or P. = 0 (26) 
3 3 3 3 

I P = PL (27) 
J 

aiCl + a2 C2 fe 3 ( 2 8 ) 

The variables have been defined in Chapter II. 

An optimization procedure has been developed which is suboptimal 

with respect to the spinning reserve constraint (Inequality 28). This 

procedure is depicted in the following flowchart. 
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1. Determine the output of nuclear and hydro units. 
2. Compute the load to be dispatched among the thermal plants. 
3. Remove rain-max limits from the thermal plants. These plants will 

participate in the Q.E.D. process. 

Does 
Slack Plant 

Exceed Max Capacity 
Limit? 

± 
Quadratic Economic Dispatch (Q.E.D.) 

Set Output of Slack Plant 
at Max Capacity. Exclude 
this Plant From the Q.E.D. 

Select a New Slack 
Plant. Compute Load 
to be Dispatched. 

Does 
Any Plant Vio-^ 

late Max Capacity 
Limit? 

Set Output of all These Plants 
Equal to their Max Limit. Ex
clude Them From the Q.E.D. Compute 
load to be dispatched. 

Does Any Plant 
'iolate Min Capacity 

Limit? 

Yes Select that Plant with Max Cost at Min 
Capacity. Set Its Output Equal to Zero. 
Exclude it from the Q.E.D. 

Compute Spinning 
Reserve Index 

(S.R.I.) 

Yes 

Select From The Non-
Participating Plants 
The One With Min Cost 
at Min Capacity to 
Enter the Solution. 

Compute the Load to be Dispatched and 
Determine Which Plants will Participate 
in the Q.E.D. 

Generation Scheduling 
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