183 research outputs found

    Buffering effect of leisure self-determination on the mental health of older adults

    Full text link
    Leisure self-determination was tested for its capacity to buffer the effects of life stress on the level of depression of older adults. A direct association between leisure-self-determination and level depression was also tested. A sample of 152 individuals aged 49 years and over completed a questionnaire which included measures of stress, leisure self-determination, and depression. Hierarchical multiple regression analysis incorporating an interaction component to represent the buffering effect was used to analyse the data. Higher levels of leisure self-determination were significantly associated with lower levels of depression regardless of life stress. Leisure self-determination also acted as a buffer of the association between life stress and depression. The study has significant theoretical and practical implications. Theoretically, it supports the stress buffering hypothesis of Coleman and Iso-Ahola (1993) when applied to a sample of older adults. The practical implications of the empirical evidence focus on the importance of fostering leisure self-determination dispositions through leisure practices, policies, and leadership styles that facilitate and support older adult autonomy in leisure experiences. <br /

    Genetic tropicalisation following a marine heatwave

    Get PDF

    Editorial: Opening the black box of kelps: Response of early life stages to anthropogenic stressors

    Get PDF
    Kelps form marine forests along world’s coastlines, providing valuable ecosystem goods and services, either directly as a source offood or medicinal products, or indirectly as biogenic habitats or carbon sink agents (Teagle et al., 2017; Wernberg et al., 2019). However, kelp forests are currently under threat due to anthropogenic climate change with latitudinal range shifts and large-scale declines at a global scale (Smale et al., 2019; Wernberg et al., 2019). Most studies on the impact of anthropogenic stressors on kelps have focused on the macroscopic sporophyte stage of the haploid-diploid life cycle (Schiel and Foster, 2006; Veenhof et al., 2022). However, the microscopic stages considered as the “black box” of kelps due to the complexity of studying them in situ, have been suggested to play a crucial role in the persistence of populations that experience sporophyte mortality after large-scale disturbances (McConnico and Foster, 2005; Barradas et al., 2011) as they can persist as “seed bank” analogues under adverse conditions (Hoffmann and Santelices, 1991; Veenhof et al., 2022). This Research Topic is a collection of 8 articles contributing to opening the “black box” of kelps by providing greater insight into how microscopic life stages of kelps are affected by anthropogenic climate change, helping to predict the persistence of these foundation species and therefore the fate of ecosystems and coastal communities. These studies highlight that the response of kelp early life stages to stressors can be strongly dependent on the population and thermal history.Australian Research Council DP190100058, DP200100201info:eu-repo/semantics/publishedVersio

    Senior Recital: Michael Lockwood, trombone

    Get PDF
    This recital is presented in partial fulfillment of requirements for the degree Bachelor of Music in Performance. Mr. Lockwood studies trombone with Tom Gibson.https://digitalcommons.kennesaw.edu/musicprograms/1512/thumbnail.jp

    Junior Recital: David Anders, French horn

    Get PDF
    This recital is presented in partial fulfillment of requirements for the degree Bachelor of Music in Performance. Mr. Anders studies French horn with Tom Witte.https://digitalcommons.kennesaw.edu/musicprograms/1532/thumbnail.jp

    Genotypic variation in response to extreme events may facilitate kelp adaptation under future climates

    Get PDF
    Marine heatwaves (MHWs) have caused declines in many kelp forests globally. Although the ecological effects of these climatic extremes have been well examined, studies on the role of genotypic variation in underpinning population responses under pressures are lacking. Understanding how kelps respond to different warming profiles and, in particular, intraspecific variation in responses is necessary to confidently anticipate the future of kelp forests, yet this remains a critical knowledge gap for most species. This study examined the responses of early life stages of 9 different genotypes of the Australian kelp Ecklonia radiata to different MHW profiles, where cumulative heat intensity was kept constant: control treatment (constant 19°C), heat spikes (fluctuating 19-23°C), low intensity MHW (ramp up 23°C) and high intensity MHW (ramp up 27°C). Overall, we found significant declines in E. radiata gametophyte performance in all MHW treatments and delays in sporophyte recruitment during MHW exposure. We also found significant genotype by environment (G×E) interactions, suggesting tolerance to acute thermal stress is influenced by genetic variation. Our results showed that offspring from different genotypes within the same population respond differently to MHWs, indicating that some genotypes are susceptible to MHWs while others are more resistant. While the effects on standing genetic variation and subsequent susceptibility to other stressors are unknown, our findings suggest that in addition to immediate impacts on marine organisms, natural genotypic variation in response to thermal anomalies may facilitate the gradual evolution of populations with increased thermal tolerance under future climates.publishedVersio

    Host genotype and microbiome associations in co-occurring clonal and non-clonal kelp, Ecklonia radiata

    Get PDF
    A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.publishedVersio

    Changes in fish assemblages following the establishment of a network of no-take marine reserves and partially-protected areas

    Get PDF
    Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20-40 m depth between 2008-2011. Each year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the rate of change in marine communities in response to protection
    corecore