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ABSTRACT 

1. Temperate reefs from around the world are becoming tropicalised, as warm-water species 

shift their distribution towards the poles in response to warming. This is already causing 

profound shifts in dominant foundation species and associated ecological communities as 

canopy seaweeds such as kelp are replaced by tropical species.  

2. Here, we argue that the cascading consequences of tropicalisation for the ecosystem 

properties and functions of warming temperate reefs depend largely on the taxa that end up 

dominating the seafloor. We put forward three potential tropicalisation trajectories, that differ 

in whether seaweeds, turf or corals become dominant. We highlight potential gains to certain 

ecosystem functions for some tropicalisation end-points. For example, local benthic fish 

productivity may increase in some tropicalised reefs as a higher proportion of primary 
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production is directly consumed, but this will be at the expense of other functions such as 

carbon export. We argue that understanding these changes in flows of energy and materials is 

essential to formulate new conservation strategies and management approaches that minimise 

risks as well as capture potential opportunities.  

3. Regardless of which trajectory is followed, tropicalised systems represent largely novel 

ecosystem configurations. This poses major challenges to traditional conservation and 

environmental management approaches, which typically focus on maintaining or returning 

species to particular locations. We outline management practices that may either mitigate 

predicted structural and functional changes or make the most of potential new opportunities in 

tropicalised reefs. These include marine protected areas to increase resilience and 

connectivity, the development of new fisheries that target range-expanding invaders, and 

assisted evolution and migration strategies to facilitate the dominance of large habitat formers 

like corals or seaweeds.  

4. We highlight important ecological and ethical challenges associated with developing novel 

approaches to manage tropicalised reefs, which may need to become increasingly 

interventionist. As technological innovations continue to emerge, having clear goals and 

considering the ethics surrounding interventions among the broader community are essential 

steps to successfully develop novel management approaches. 

 

INTRODUCTION 

Worldwide, species are responding to climate change through geographic range shifts (Pecl et al. 

2017), changes in demographic processes (Selwood, McGeoch & Mac Nally 2015), physiological 

acclimatisation (Pörtner & Farrell 2008) and evolutionary adaptation (Hoffmann & Sgrò 2011). 

These changes are leading to profound alterations in species composition with impacts on our 

economies, food supply and health (Pecl et al. 2017). 
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 A recent analysis of more than 35,000 plant, mammal, bird, fish, and invertebrate species 

revealed profound changes in global biodiversity, but contrary to expectations there was not a 

systematic loss of biodiversity (Dornelas et al. 2014). Instead, communities are undergoing a 

massive turnover in their constituent species, resulting in the global emergence of communities with 

novel species configurations (Hobbs et al. 2006). Changes in species distributions and altered 

biological assemblages in response to historical changes in the abiotic environment are well known 

from paleoecological studies (Blois et al. 2013), but in recent decades the rate at which species are 

moving has greatly accelerated in response to anthropogenic environmental change (Chen et al. 

2011).  

 Species redistributions and the resulting emergence of novel biological assemblages pose 

major challenges to traditional conservation and environmental management approaches, which 

typically focus on maintaining or returning species to particular locations (Hobbs et al. 2017). As we 

are increasingly unable to protect or conserve historical conditions, new management approaches 

require understanding the mechanisms driving novel ecosystem configurations and how these 

changes impact the benefits that humans derive from our natural systems, so that we can secure 

ecosystem services into the future. 

 In marine systems, biological assemblages sitting just outside tropical latitudes are becoming 

re-organised or “tropicalised”, as warm-affinity species become increasingly dominant and cool 

water species recede (Vergés et al. 2014a). These changes are linked to gradual warming coupled 

with intensifying poleward flowing boundary currents (Wu et al. 2012), which warm temperate 

waters and transport larvae from the tropics to temperate reefs (Vergés et al. 2014a). These new 

arrivals colonise warming temperate systems, and result in significant change in the system when 

new interactions among previously separated taxa emerge, for example tropical herbivores 

overgrazing temperate foundation seaweed species (Vergés et al. 2014b; Vergés et al. 2016). Rapid 

warming, such as during marine heatwaves, can also result in mass die-offs of kelp (Wernberg et al. 

2016). These phenomena have led to extensive losses of seaweed forests and the species they 

support over hundreds of kilometres of coastlines, with declines now documented from eastern and 
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western Australia to Japan, Korea and the Mediterranean (Denis et al. 2013; Vergés et al. 2014b; 

Wernberg et al. 2016; Kumagai et al. 2018).  

 Although tropicalisation is a global and increasingly visible phenomenon (Vergés et al. 

2014a), the overall consequences of these changes for ecosystem functions or services like primary 

production, nutrient cycling or fisheries production are poorly understood. As well as the loss of 

temperate species, tropicalisation also entails the range expansion of tropical habitat-forming species 

like corals (Tuckett et al. 2017) and the development of novel coral reef ecosystems (Graham et al. 

2014). Thus a key question for understanding and managing these systems is: Will the functioning 

of novel tropicalised systems in time become similar to tropical habitats, such as coral reefs, or 

should entirely new ecosystem functions be expected?  

 Here, we discuss the potential consequences of tropicalisation for the properties and 

ecosystem functions (sensu Bellwood et al. In press) that underpin the goods and services that 

humans derive from temperate reefs, and its consequences for the management of our marine 

environment. Although recent studies show that range shifts in temperate species (e.g. from 

dominance of cold to warm-affinity kelp) is already impacting important ecosystem functions 

relating to benthic biomass, energy flow and nutrient cycling (Pessarrodona, Foggo & Smale 2018), 

here we focus on tropicalised shallow reefs in mid-latitudes (23-35 °N or S). In these regions, 

species are shifting across major biogeographic boundaries. These regions also represent both a 

potential refugia for corals as tropical temperatures rise beyond their physiological limits (Beger et 

al. 2014) and the contracting edge of economically important kelp forests that are the biogenic 

engine of temperate reefs (Bennett et al. 2016). 

 

TRAJECTORIES FOR WARMING TROPICALISED REEFS 

Habitat-forming organisms or foundation species mediate important ecosystem functions including 

nutrient cycling and provision of refuge, nursery, foraging and breeding areas for species. As a 

consequence, changes in the identity and relative abundance of habitat-formers in tropicalised 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

temperate reefs can cause dramatic changes in the physical structure and functioning of these 

systems, with significant knock-on effects for associated biodiversity (Terazono et al. 2012; Vergés 

et al. 2016; Wernberg et al., 2016).  

 Globally, tropicalised shallow reefs share two key phenomena: a loss of temperate seaweed 

forests as the dominant habitat-formers, and increases in tropical/ subtropical species. Different 

regions, however, differ in which taxa end up dominating the seafloor, with three potential 

trajectories identified for warming temperate reefs globally (Fig. 1):  

(a) Seaweed-dominated reefs (e.g. Japan) – these systems may emerge if tropical seaweed species 

(Fig. 2b) replace temperate canopy-formers, as in some southern Japan reefs (Tanaka et al. 2012; 

Terazono et al. 2012) or, hypothetically, such a system may develop if some temperate seaweeds 

adapt to their new environment and persist into the future. 

(b) Turf dominated reefs (e.g. eastern Mediterranean) – these systems are characterised by low 

structural complexity and simplified food webs, as canopy seaweeds become replaced by low-

biomass turfing algae (Fig. 2c; Vergés et al. 2014b; Filbee-Dexter & Wernberg 2018) 

(c) Turf and coral dominated reefs (e.g. Japan, Australia, Korea) – in these systems warm-

temperate corals and/ or range expanding tropical corals coexist with turf algae (Fig. 2d), which 

have replaced seaweeds as the dominant primary producers (Yamano, Sugihara & Nomura 2011; 

Vergés et al. 2016; Wernberg et al. 2016; Tuckett et al. 2017).  

 

PREDICTED IMPACTS TO BIODIVERSITY, ECOSYSTEM FUNCTIONS & SERVICES 

Changes to biodiversity 

The extent of biodiversity changes to temperate reef systems undergoing tropicalisation will depend 

on several factors: how fast temperate species contract and tropical ones expand; the degree of 

functional redundancy between habitat forming species lost and gained; changes in species 

interactions; and changes in beta diversity. To date, range shift observations suggest that tropical 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

species are expanding their ranges faster than temperate ones are retracting, leading to an overall 

increase in the total number of species present in tropicalised reefs (Vergés et al. 2016; Wernberg et 

al. 2016). This could be due to differences in mechanisms underpinning range extensions and 

contractions (Bates et al. 2014b); extensions only require the dispersal and establishment of a few 

new individuals whereas contractions require the death and disappearance of all individuals. This 

implies the inflated biodiversity could be based on an extinction debt and therefore potentially 

temporary. 

Tropicalisation is unlikely to be the cause of species extinctions at a global scale at least in the 

short term (e.g. within 50 years), partly because many temperate species are habitat generalists 

(Taylor & Cole 1994) and partly because most temperate coastlines extend across broad latitudinal 

ranges where poleward retreat is possible. Exceptions to this include the Great Southern Reef (GSR) 

in Australia (Bennett et al. 2016), which runs across the entire southern edge of the continent 

(including Tasmania), but ends at 39 
o
S and has few stepping stones or connections further south 

towards Antarctica. The GSR has high levels of endemism; for example, up to 77% of seaweeds, and 

56% of invertebrates are found nowhere else globally (Bennett et al. 2016). Many of these species 

could disappear given currently predicted poleward shifts in seaweed forests beyond the continent by 

2100 (Martínez et al. 2018), posing a critical threat and substaintal management challenge for this 

region in the immediate future. 

Seaweed forests support a broad range of organisms through provision of habitat or food, either 

directly or as detritus (Krumhansl & Scheibling 2012; Teagle et al. 2017; Fulton et al. 2019). 

Observational and experimental studies have shown substantial declines in α diversity through loss of 

overall abundance and number of species when seaweed forests disappear (Graham 2004; Ling 2008). 

Loss of species caused by the replacement of kelp forests by other seaweeds may be offset if these 

provide similar microhabitats (Coleman & Wernberg 2017), though species identity is likely to 

change. For example, co-occurring cool-water laminarian kelps and more warm-tolerant Sargassum 

species support significantly different associated communities (Coleman & Wernberg 2017) and a 

shift from kelp to Sargassum (Tanaka et al. 2012; Wernberg et al. 2016) will likely reflect these 
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changes. In contrast, where the seaweed forest is replaced by tightly packed low-lying turf species 

(Fig. 1c) biodiversity is likely to decline (Vergés et al. 2014b).   

Changes in biodiversity can also be strongly influenced by the range expansion of coral as 

alternative habitat-formers, a process already occurring along the coasts of Japan (Yamano, Sugihara 

& Nomura 2011; Kumagai et al. 2018), Korea (Denis et al. 2014), the western Mediterranean 

(Serrano, Coma & Ribes 2012) and Australia (Baird, Sommer & Madin 2012; Tuckett et al. 2017). 

The range expansion of structurally complex corals is likely to result in increases in biodiversity as 

new ecological niches become available in temperate latitudes, and in some instances the associated 

fauna are already expanding their range along with coral organisms (Yamano et al. 2012). The scope 

for latitudinal expansion of corals is however species-specific (Madin et al. 2016), and increases in 

coral cover are not being recorded in all tropical-temperate transition zones. This suggests changes in 

biodiversity associated with corals are also likely to be highly region-specific and dependent on 

abiotic conditions such as light (Sommer et al. 2018).  

 

Climate change is also making the ocean more acidic, especially in higher latitudes sitting just 

outside the tropics (Hooidonk et al. 2014), and this may impact range expanding corals and associated 

biodiversity. In particular, acidification tends to increase coral reef bioerosion, preventing effective 

reef accretion (Barkley et al. 2015), and this may be further accentuated by higher nutrients (e.g. due 

to increases in current-driven upwelling; Schaeffer, Roughan & Wood 2014), which can impair coral 

skeletal density and limit reef construction (Manzello et al. 2014). This suggests that high latitude 

coral-dominated reefs of the future may not form accreting reef frameworks (Perry & Alvarez-Filip In 

press), which may limit associated biodiversity. Ocean acidification may also limit corals by 

enhancing the competitive strength of turf and seaweeds generally (Connell & Russell 2010; 

Diaz‐ Pulido et al. 2011) and of kelp in particular (Linares et al. 2015). 
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Provision of habitat and nursery functions and implications for fisheries 

A core function of habitat-forming species is the creation of physically complex living space and 

shelter on reefs for a variety of flora and fauna. Where tropicalisation causes shifts in benthic 

composition (e.g. by shifting from kelp to turf algae as the dominant taxa), refuges will be modified, 

which may lead to mortality of some species (O'Brien et al. 2018) or even declines of whole trophic 

groups that rely on specific refuges (Rogers et al. 2018).  

Juvenile fishes, for instance, are particularly vulnerable to predation, and the shelter provided 

by nursery habitats such as kelp forests, can positively impact recruitment and success of fish 

populations (Carr 1991). Fish recruits and juveniles are often habitat-specialists and may have strong 

selectivity for specific microhabitats as nursery grounds (Tolimieri 1995), while settlement success 

may depend on availability of habitat settlement cues (Dixson, Abrego & Hay 2014) or settlement 

substrate.   

Tropical coral reefs are generally considered more complex than seaweed forests (Gratwicke 

& Speight 2005), which in turn are more complex than turf-dominated reefs (Filbee-Dexter & 

Wernberg 2018). The replacement of seaweed forests with animal ‘forests’ on tropicalised reefs may 

have beneficial effects for some species, facilitating survivorship through protection from predators 

by offering new refuge spaces and camouflage (Wilson et al. 2010). Importantly, however, losses of 

temperate seaweed forests will have negative consequences for many economically important 

temperate species such as abalone (Serisawa et al. 2004), lobster (Johnson et al. 2011), and fish 

(Yamasaki et al. 2014). 

On tropicalised temperate reefs, the time needed for slow growing species such as coral to 

establish will have a pronounced effect on fish recruitment (Coker, Wilson & Pratchett 2014). 

Further, on many tropical coral reefs, juveniles of reef fishes rely substantially on non-reef habitats 

such as seagrasses, mangroves and tropical seaweed forests as nurseries prior to ontogenetic migration 

to coral reefs as adults (Nagelkerken et al. 2002; Wilson et al. 2010; Fulton et al. 2019). Hence, the 

distribution of these habitats relative to tropicalised temperate reefs, as well as the presence of 
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connectivity corridors to facilitate ontogenetic movements that promote survivorship of juvenile fish 

(Berkström et al. 2013), may be limiting factors in the success of many tropical reef fishes on 

tropicalised reefs.  

The consequences of potential substitution of kelps by tropical seaweeds will depend 

not only on the morphology of these ‘new’ habitat-formers, but also on their phenology. 

Many temperate laminarian kelp species are perennial with persistently high levels of 

cover/biomass, whereas tropical seaweeds such as Sargassum spp. have shorter periods of 

high vegetation cover (Fulton et al. 2014). Seasonal declines in seaweed cover as well as 

potential mismatches in timing between seaweed cover and recruitment events could affect 

fish population replenishment on tropicalised reefs (Terazono et al. 2012; Yamasaki et al. 

2014).  

In contrast to corals, kelps and other habitat forming seaweeds, turf algae provide minimal 

structure and habitat functions (Filbee-Dexter & Wernberg 2018). Nevertheless, some structurally-

simple habitats, including turf algae dominated habitats, can be functionally important as juvenile fish 

nurseries for some species (Galaiduk et al. 2013), including many range shifting tropical species 

(Beck et al. 2017). This suggests that the replacement of kelp forests by turf algae may create a 

positive feedback loop that facilitates tropicalisation of temperate reefs, especially in areas where 

boulders may also offer abiotic refuge spaces.  

 

Food webs and energy fluxes in temperate vs. tropical reefs and implications for tropicalised 

systems  

Although benthic productivity is extremely high in both temperate and tropical reefs, the overall 

patterns of energy and organic carbon flow differ markedly between these systems. In temperate reefs 

(Fig. 1a), primary productivity of species like kelp is typically very high but also very seasonal 

(Wernberg et al. 2019), and only a small proportion of this productivity (<20%) is consumed by 
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herbivores, with over 80% ending up as detritus/ dissolved organic matter (Krumhansl & Scheibling 

2012). Kelp detritus can be exported across distances ranging from meters to hundreds of kilometres 

(Filbee-Dexter et al. 2018). This constitutes an important trophic subsidy sustaining high secondary 

production in habitats with no or low primary production, including reefs with no canopy seaweeds, 

sandy beaches and the deep sea (Filbee-Dexter et al. 2018). Alternatively, kelp detritus may become 

sequestered in adjacent ‘carbon sink habitats’ such as seagrass meadows (Hill et al. 2015). 

This situation is reversed in tropical coral-dominated reefs (Fig. 1d), where low biomass 

‘turfs’ and associated microbes sustain highly productive habitats. Here, herbivorous fish consume 

50-100% of turf primary production (Carpenter 1986; Hay 1991), including microbes and detritus 

(Wilson et al. 2003; Clements et al. 2017). These striking differences between tropical and temperate 

reefs in herbivory and detritivory are reflected in food web studies, which show that seaweeds support 

only a small proportion of total fish biomass in shallow temperate reefs (Truong et al. 2017), while 

turf algae and detritus are major contributors to fish biomass in coral reefs (McMahon et al. 2016).  

We know little about how energy flow and food webs are changing in warming temperate 

reefs. A meta-analysis of more than 600 experiments showed that ocean warming typically increases 

metabolic rates as well as primary production and consumption (Nagelkerken & Connell 2015). 

Mesocosm experiments suggest that this can lead to ecosystem collapse and simplified food webs if 

increases in primary production are converted to unpalatable detritus and not consumed (Ullah et al. 

2018). These mesocosm studies, however, typically do not incorporate the effects of ‘species on the 

move’ that characterise tropicalisation and which can have important effects on altered food web 

dynamics.  

Importantly one of the most consistent observations on tropicalised temperate reefs globally 

has been the increased abundance and functional diversity of herbivorous fishes (Vergés et al. 2014a), 

and turf-feeding invertivores and detritivores (Bennett et al. 2015). Recent studies suggest these 

species can play a significant role in the remineralisation of turf algae, small-particulate POM and 

invertebrate biomass and may also be increasing the bioavailability of nutrients and impacting local 

redistribution and recycling patterns (Shantz et al. 2015). The increased availability of easily 
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accessible nutrients could fuel additional growth of turf algae and provide a feedback to strengthen 

the dominance of turf (Filbee-Dexter & Wernberg 2018). This suggests that some tropicalised reefs 

may start to resemble coral-dominated systems, with a higher proportion of primary production being 

consumed and recycled locally (Fig. 1c, 1d). This, in turn, may result in increased flow of energy to 

higher trophic levels, potentially leading to increases in the biomass of benthic species, but reducing 

the strength of cross-habitat trophic subsidies and impacting habitats that are currently subsidised by 

kelp detritus.  

Changes in the pattern of energy and material flows brought about by shifts in habitat-formers 

in tropicalised temperate reefs will also impact the potential for carbon sequestration. Although the 

role of temperate kelp forests as effective long-term carbon sinks is still under investigation (Howard 

et al. 2017), recent studies suggest that kelp that reaches adjacent depositional areas can be 

sequestered in sediments and contribute meanginfully to the world’s ‘blue carbon’ budget (Hill et al. 

2015; Krause-Jensen et al. 2018). The replacement of low latitude kelps by corals or turf (Fig. 1c and 

1d) would reduce this source of blue carbon, whereas a replacement with tropical seaweeds would 

mostly change detritus supply pathways.  

 

Consequences for tourism activities  

Tourism is a major component of the economy of many coastal areas (Kragt, Roebeling & Ruijs 

2009; Bennett et al. 2016) and benefits society more broadly through its contribution to human well-

being. Nature-based marine tourism, e.g. scuba diving, snorkelling, eco-filming and underwater 

photography, is highly dependent on healthy marine environments and a major source of revenue at 

coastal tourist destinations (Biggs et al. 2015; Bennett et al. 2016). Hence, tropicalisation of 

temperate reefs may redistribute tourism flows (Weatherdon et al. 2016) and create both winners and 

losers in the marine tourism industry, depending on the type and location of tourism activities 

(Moreno & Amelung 2009; Marshall et al. 2011). Such changes will require an adaptive response 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

from marine tourism markets to adjust existing tourism modes and take advantage of emerging 

opportunities (Graham et al. 2014; Weatherdon et al. 2016).  

Kelp forest ecosystems support a range of marine tourism activities along temperate zone 

coastlines around the world. In Australia, tourism, recreational and commercial fisheries from the 

temperate Great Southern Reef is a major contributor to coastal economies with an estimated value of  

AUD$10 billion/year (Bennett et al. 2016). Ecotourism activities such as recreational scuba diving 

and eco-filming in the southern Benguela generates an estimated USD$22.4 million/year in tourism 

revenue for the region (Blamey & Bolton 2018). Similarly, recreational scuba diving in kelp forests 

and sport fishing are highly profitable sources of income for tourist enterprises in temperate reefs 

(Beaumont et al. 2007), with diving activity levels correlated with kelp persistence (Menzel et al. 

2013). Both the economic and ecological value of temperate reefs may be impacted if kelp forests are 

lost from these ecosystems. 

Warmer waters and shifts in temperate reef ecosystems towards communities more similar to 

tropical reefs, such as a high diversity of corals and reef fishes, may deliver an underwater scenery 

that is highly valued by reef-viewers (Williams & Polunin 2000), potentially increasing the tourism 

value of these reefs (Nakamura et al. 2013). For example, species range shifts associated with 

tropicalisation may create new opportunities for recreational fishing tourism (Champion et al. 2018), 

while warmer conditions may enhance fitness and thus yields of some native temperate species 

(Nelson et al. 2013). Conversely, the significance of catching increasingly rare and highly prized 

species of temperate fishes and organisms such as abalone and lobster, may be enhanced for 

recreational fishers. Cascading effects induced by tropicalisation may also alter the distribution 

pattern of higher trophic groups, with impacts on tourism activities that are based on encounters with 

these marine fauna, such as shark diving and whale watching.  

Attraction to reef viewing activities by tourists has strong links to ecosystem condition, which 

is influenced by attributes such as healthy habitats, abundance of living marine life, diversity of fish 

and reef complexity (Biggs et al. 2015). While coral-dominated tropicalised temperate reefs (Fig. 1d) 
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may enhance the attractiveness of temperate reefs to tourists, thereby compensating for any tourism 

revenue losses associated with declines in healthy natural temperate reefs, a shift to turf-dominated 

reefs (Fig. 1c) is likely to reduce tourism and its benefits 

 

APPROACHES TO MANAGING TROPICALISED REEFS 

Even with rapid reductions in carbon dioxide emissions, the world’s oceans will continue to warm for 

many decades, and continued impacts on coastal ecosystems are expected globally (Gattuso et al. 

2015). Fundamental to our understanding of tropicalised temperate systems is that regardless of which 

trajectories are followed, these systems will represent novel ecosystem configurations. This poses 

major challenges, practically, legally and philosophically, to traditional approaches to conservation 

and environmental management, which typically focus on maintaining or returning species to 

particular locations (Hobbs et al. 2017; McDonald et al. 2019). Below we consider both more 

traditional (MPAs) and emerging (‘assisted evolution‘) approaches to conservation of these 

ecosystems, and briefly discuss some of the ethical considerations underlying choices of management 

approaches.  

 

Marine Protected Areas to increase resilience and connectivity 

Marine protected areas (MPAs) generally limit or ban extractive activities either within individual 

reserves or within entire marine parks (e.g., networks of reserves spanning 100s of km). For kelp 

ecosystems, this protects not only the kelp themselves, but can also lead to restoration of trophic 

functions (Babcock et al. 2010). Cessation of extractive activities within MPAs generally results in 

greater abundance and size of higher order predators (Lester et al. 2009; Edgar et al. 2014). These 

effects can cascade through food webs by limiting urchin grazing and facilitating kelp recolonisation 

(Babcock et al. 2010). Whether increases in predators can also limit grazing by range-expanding 

herbivorous fish that maintain tropicalisaed reefs in kelp-free states is, however, largely unknown. In 

higher latitude reefs, MPAs appear to limit the spread of range-extending species and buffer climate-
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related biological variability (Bates et al. 2014a; Bates et al. 2017), but whether this applies to lower 

latitude systems remains to be established.  

A goal of many MPAs globally is to maintain connectivity in landscapes of habitat loss, 

fragmentation and degradation and to act as a source for recolonisation in non-protected areas 

(Palumbi 2003; Coleman et al. 2011). However, the strategy of reversing tropicalisation at low 

latitudes via facilitation of connectivity and recolonization of kelp may be challenging. The approach 

relies on three assumptions: (i) healthy kelp forests persist in MPAs within a landscape of degraded 

reefs, (ii) the initial stressor is not permanent and conditions will become favourable for 

recolonization and (iii) dispersal mechanisms are favourable for kelp dispersal into denuded areas. 

Such assumptions are rarely met. Direct climate stressors such as warming are often gradual and long 

term, and even when stressors are temporary (e.g. marine heatwaves) persistence of tropical biota 

such as herbivores will be an enduring indirect climate stressor that limits kelp recolonization 

(Wernberg et al. 2016). Moreover, oceanographic conditions that are required for dispersal and 

recolonisation of kelp into areas where it has been lost are often unfavourable (Coleman et al. 2017; 

Wernberg et al. 2018).  

 

MPAs may play a greater role in mediating tropicalisation if scientists and managers begin to 

anticipate future change and manage beyond extant conditions to ‘future-proof’ the ecological 

systems and functions that we value (Coleman et al. 2017; Bruno et al. 2018). For example, there may 

be benefit in identifying potential thermal refugia (Ban et al. 2016). Similarly, areas with 

oceanographic conditions that allow kelp to thrive (Lourenço et al. 2016) could be prioritised for 

protection to prolong persistence in landscapes of degradation and tropicalisation. Nonetheless, 

projections of climate impacts within MPAs across the globe suggest that even with such 

consideration, climatic impacts within MPAs will continue to dramatically change marine ecosystems 

(Bruno et al. 2018).  
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Capturing new opportunities as a management action  

A potential management approach to limit tropicalisation may be to target range-expanding invaders, 

for example by developing a new fishery or culling programs for specific species. This approach is 

already used with many invasive species. For example, invasive alien crabs are being used in the 

marine aquaria trade, turning a threat into a profit (Calado 2012), and similar strategies are being 

considered for other invasives like the Atlantic blue crab, which has substantial potential as a new 

fishery (Mancinelli et al. 2017). Targeted removals of the invasive lionfish are also being 

implemented worldwide and can be effective at minimising impacts (Frazer et al. 2012).  

 The development of new fisheries as species shift their distributions is emerging as an 

important adaptation strategy to climate change, albeit one with intrinsic major challenges as species 

shift across local, national, and international boundaries (Gaines et al. 2018; Pinsky et al. 2018). 

Although shifts in the distribution of commercially important fish stocks has already led to new 

fishery opportunities and positive economic impacts in some high latitude regions (Jansen et al. 

2016), the socio-economic consequences of range-shifting species are still largely under-explored 

(Madin et al. 2012). 

In the Eastern Mediterranean, range expanding rabbifishes have become an important 

component of fisheries catches (El-Haweet 2001; Bariche 2005) and are increasingly being targeted in 

Australia (Gilby, Tibbetts & Stevens 2017; Lenanton et al. 2017). However, whether targeting 

rabbitfish could effectively control the population and decrease grazing pressure on kelp forests 

remains hypothetical, given that rabbitfish have fast life histories and can sustain high fishery yields 

despite intense exploitation rates (Robinson et al. 2018). Further, any management action that 

depends on increased fishing effort will have by-catch implications that will also need to be 

considered.  
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Assisted evolution and migration  

Assisted evolution is the acceleration of evolutionary processes to enhance certain traits (Jones & 

Monaco 2009; van Oppen et al. 2015). Conceptually, the idea includes one or both of (a) enhancing 

genetic adaptation (resilience) of a species to current or future environmental stressors such as climate 

change and (b) assisted (enhanced) gene flow (Aitken & Whitlock 2013) by which superior genes or 

genotypes are introduced and propagated through the target population. For the former, possibilities 

range from selective breeding of more resilient individuals to the creation of genetically modified 

organisms via direct genetic manipulations (van Oppen et al. 2015), which has recently been piloted 

using CRISPR/Cas9-genome editing (Cleves et al. 2018). For the later, transplanting adapted 

individuals (assisted migration) or ‘seeding’ challenged populations with propagules from enhanced 

individuals have both been contemplated.  

 Of the three broad possible community configurations for tropicalised temperate reefs (Fig. 

1), we argue that systems with large habitat-formers - corals or seaweeds  - are more desirable than 

systems dominated by turf alone (Fig. 1c). This implies three possible strategies for assisted evolution 

in these systems: (1) enhance the persistence and resilience of the resident, dominant temperate 

seaweeds (e.g. kelp), (2) enhance other canopy forming seaweeds, either those which themselves are 

moving polewards (tropical range expanders), or temperate residents which may be more resilient to 

change (e.g. more thermally tolerant), or (3) accelerate the movement or adaptation of corals to their 

new higher latitude habitats, for example if it is decided that coral functioning or provision of 

ecosystem services is preferable to other potential system configurations. 

Trying to  slow down or halt tropicalisation by genetically enhancing the resilience of kelp 

communities is largely unexplored. This could potentially be done at the low latitude margins of their 

ranges, which are already experiencing tropicalisation, or in more central, “core” populations that are 

yet to undergo change. Both have significant challenges linked to the complex biphasic life history of 

many seaweeds and our limited understanding of the genes and heritability underlying thermal 

tolerance in kelps (Wernberg et al. 2018). Moreover, kelp life histories often result in limited 
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dispersal (Durrant et al. 2014). Thus the second stage of assisted evolution – gene flow and uptake 

within the target population – is likely to be slow for most kelps. It is also clear that the loss of kelp is 

affected by both the direct physiological effects as well as the indirect effects of ocean warming, such 

as increased herbivory due to the poleward movement of tropical herbivorous fishes (Vergés et al. 

2014a; Vergés et al. 2016). Thus enhancing kelp forests in the face of tropicalisation may require 

enhancing their resistance to biotic effects such as herbivory in parallel to temperature. 

For kelp, an alternative option may be to “future-proof” core populations by moving 

thermally tolerant genotypes from low latitude populations to central populations, potentially 

enhancing resilience as warming advances poleward. However, this strategy relies on the assumption 

that low latitude kelps are better adapted and have been selected for thermal tolerance, which may not 

be the case (Wernberg et al. 2018; Donelson et al. 2019). Potential increases in thermal tolerance may 

also come at the cost of other important traits, such as growth (McAfee, O’Connor & Bishop 2017). 

Laminarian kelp often occur mixed with other temperate canopy forming seaweeds that play 

similar functional roles (Steneck & Johnson 2013) and may present alternative targets for assisted 

adaptation. However, most canopy algae that co-occur with kelp at lower latitudes (particularly 

fucoids) are also of temperate affinity, and may actually be even more susceptible to warming and 

herbivory than kelps (Smale & Wernberg 2013; Martínez et al. 2018), presenting poorer targets for 

assisted adaptation. A more realistic scenario may be to consider assisting colonisation of range 

expanding tropical canopy forming algae (primarily Sargassum spp.) that could maintain relatively 

similar functional roles to those of kelp canopies in tropicalised systems (Fulton et al. 2019). Species 

of Sargassum are generally morphologically plastic and resilient to a wide range of abiotic and 

physical conditions (Loffler & Hoey 2018). Although tropical Sargassum species are generally 

susceptible to herbivores, they can nevertheless form extensive forests in some habitats during periods 

of maximum seaweed growth (Doropoulos et al. 2013; Fulton et al. 2019). Fucoids like Sargassum 

also have simple life histories and some species that float once dislodged have good dispersal 

capabilities (Deysher & Norton 1981). Hence, assisted gene flow or dispersal may be sufficient to 
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promote colonisation of canopies of tropical Sargassum spp. in areas undergoing climate-mediated 

tropicalisation, rather than assisted evolution per se.  

The third option for maintaining more desirable ecosystem states than turf is to accelerate 

adaptation/movement of corals into cooler waters. Naturally recruited corals inhabiting high latitude 

reefs areas appear tolerant to cooler waters including cold spells (Tuckett & Wernberg 2018), but can 

still be susceptible to bleaching during warm thermal events (Hughes et al. 2017). Assisting the 

migration of more thermally tolerant corals may be beneficial to coral persistence at higher latitudes, 

however, there are still major knowledge gaps including the heritability of traits in corals and/or 

symbionts (van Oppen et al. 2015). 

 

Ethical considerations  

The traditional focus of conservation and management of marine ecosystems has been on maintaining 

or restoring systems to some presumed ‘natural’ or historical state. However, we argue that many if 

not most systems in terrestrial and marine environments have moved beyond historical limits of 

variability and represent novel ecosystems (sensu Hobbs et al. 2006). This includes tropicalising 

coastlines, and if we accept that these systems are novel, and the potential for restoring them to a 

historical state is low, the underlying logic for managing these systems changes (Barnosky et al. 

2017). What, then, are our ethical obligations regarding the management of these new ecosystems? 

 

Given that humans have played a major role in creating these novel ecosystems, it is in our 

view ethically appropriate to consider active ecological interventions when considering how to 

mitigate and manage tropicalising marine ecosystems. This view is gaining traction in the scientific 

literature generally, including the development of logical structures for where/when/how to 

implement interventions – ‘decision trees’ (Barnosky et al. 2017) – for terrestrial as well as marine 

systems (van Oppen et al. 2017; Filbee-Dexter & Smajdor 2019).  Such studies indicate that the ethics 
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of more interventionist approaches depend on factors such as the degree of confidence that the system 

is outside of historical limits and/or is unlikely to return to a historical state in the future, and the type 

of intervention and associated risks of unknown consequences (Barnosky et al. 2017; van Oppen et al. 

2017). 

Another important consideration is how to settle on desired management goals. If we are not 

returning ecosystems to historical states, we must have some other target criteria for managing 

ecosystems. Maximising biodiversity, maximising ecosystem services or mimicking historical 

ecosystem structure and function are reasonable targets, but these three goals are also unlikely to be 

equally achieved by any given intervention (Barnosky et al. 2017).  

Who then decides what these targets should be? Attitudes to the desirability and ethics of 

intervention are likely to differ both among scientists and practitioners (McLachlan, Hellmann & 

Schwartz 2007), and these differences are likely to be even greater once one includes the broader 

context of the general community, managers and politicians (Filbee-Dexter & Smajdor 2019). It will 

be critical for scientists and managers to focus on the community’s acceptance of more interventionist 

approaches, and work towards building the social license necessary for implementation of these 

approaches. This needs to be done in a timely fashion, given the time-lag between experimental 

adoption of new approaches by specialists and community acceptance of these innovations. As an 

example, the science and technology development of stem cell therapies or more recently, CRISPER 

based approaches, is happening well in advance of community understanding or acceptance of the 

desirability or ethics of these technologies (Baltimore et al. 2015), contributing to disruption in uptake 

and community anxiety.  

 Tropicalising marine coastlines are a particularly interesting and challenging case for these 

ethical considerations. In most instances where ecological interventions are considered, they are 

aimed at rehabilitating a degraded system, even if it is not to a historical state. For tropicalised 

systems choices may need to be made between two highly valuable and valued ecosystems – kelp 

beds and coral reefs. That is, do we use the techniques described above to try and enhance the 
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persistence of kelp forests at their warm edges, do we do nothing, anticipating the gradual 

encroachment of tropical communities including corals into at least some systems, or do we – given 

the decline of corals in the core parts of their distributions – even try and enhance the polewards 

spread of corals into former kelp systems? These are questions that we believe few scientists or 

managers have yet confronted, and thus in many ways, the management and ethical considerations 

that arise from tropicalisation are novel, like the ecosystems themselves. 

 

CONCLUSIONS 

Temperate reefs and their diverse ecological communities have long supported human use, and there 

is strong economic and cultural reliance on these coastlines (Bennett et al. 2016; Blamey & Bolton 

2018). Like coral reefs, temperate reefs are however becoming increasingly shaped by human-induced 

drivers instead of long-term natural biophysical gradients (Williams et al. 2019). Adapting to 

warming and tropicalised temperate reefs depends on our capacity to accurately understand changes 

to the functioning of these systems, and to devise adequate responses. Here we have presented three 

potential trajectories of tropicalisation for warming temperate reefs worldwide that differ in the taxa 

that end up dominating the seafloor (seaweeds, turf or corals; Fig. 1). We speculate that some 

tropicalisation end-points may result in gains to some ecosystem functions (e.g. local fish 

productivity), but at the expense of other functions (e.g. carbon export). Understanding these changes 

in flows of energy and materials is essential to formulate new conservation strategies and 

management approaches that minimise risks as well as capture potential opportunities. As 

technological innovations continue to emerge, having clear goals and considering the ethics 

surrounding interventionist approaches among the broader community are also essential steps to 

develop novel management approaches. 
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FIGURES 

 

 

 

Figure 1. Representation of key ecosystem functions in (a) current state seaweed-dominated 

temperate reefs, and three potential scenarios for future-state tropicalised temperate reefs dominated 

by (b) tropical seaweed, (c) turf algae, or (d) coral. We illustrate here extreme projections, however 

transitional phases between the various scenarios are also likely to occur. The size of legend icons 

indicates the relative importance of ecosystem processes.  
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 Figure 2. Photographs depicting (a) Warming temperate reef in Sydney, eastern Australia, 

dominated by kelp; (b) Tropical fucoid seaweed forest in Ningaloo, western Australia; (c) Turf-

dominated system in Aksaki, Turkey; and (d) coral-dominated system in the Solitary Islands tropical-

temperate transition zone, eastern Australia. Photo credits: (a) John Turnbull, (b) Chris Fulton, (c) 

Adriana Vergés, (d) Brigitte Sommer.  


