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1.  INTRODUCTION

Extreme climatic events have driven rapid changes
in species distributions and altered ecosystem struc-
ture and functioning by causing mortality, range
shifts and community reconfiguration (Moreno &
Møller 2011, Smale et al. 2019). While the ecological
consequences of extreme climatic events are well
studied (e.g. Smale et al. 2019), less information is

available on the role of genetic diversity in enhanc-
ing population performance and ecosystem functions
under stress, especially for marine systems (Wern-
berg et al. 2018). Yet these studies are necessary to
reliably forecast species vulnerability and adaptive
potential under future climate change.

Marine heatwaves (MHWs) are extreme events
defined as sea surface temperature (SST) anomalies
warmer than the 90th percentile based on historical
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ABSTRACT: Marine heatwaves (MHWs) have caused declines in many kelp forests globally. Al-
though the ecological effects of these climatic extremes have been well examined, studies on the
role of genotypic variation in underpinning population responses under pressures are lacking. Un-
derstanding how kelps respond to different warming profiles and, in particular, intraspecific varia-
tion in responses is necessary to confidently anticipate the future of kelp forests, yet this remains a
critical knowledge gap for most species. This study examined the responses of early life stages of 9
different genotypes of the Australian kelp Ecklonia radiata to different MHW profiles, where cumu-
lative heat intensity was kept constant: control treatment (constant 19°C), heat spikes (fluctuating
19− 23°C), low intensity MHW (ramp up 23°C) and high intensity MHW (ramp up 27°C). Overall, we
found significant declines in E. radiata gametophyte performance in all MHW treatments and
delays in sporophyte recruitment during MHW exposure. We also found significant genotype by
environment (G×E) interactions, suggesting tolerance to acute thermal stress is influenced by ge-
netic variation. Our results showed that offspring from different genotypes within the same popula-
tion respond differently to MHWs, indicating that some genotypes are susceptible to MHWs while
others are more resistant. While the effects on standing genetic variation and subsequent suscepti-
bility to other stressors are unknown, our findings suggest that in addition to immediate impacts on
marine organisms, natural genotypic variation in response to thermal anomalies may facilitate the
gradual evolution of populations with increased thermal tolerance under future climates.
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Growth · Kelp · Ocean warming
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observations from the prior 30 yr, which last for a
period of 5 or more consecutive days (Hobday et al.
2016). In recent years, a number of high-profile
MHWs have been recorded in all major ocean basins
(Holbrook et al. 2019), with large ecological and
socio-economic consequences (Smale et al. 2019).
These extreme events have led to distributional shifts
in benthic marine species and ecosystem reconfigu-
rations (Smale & Wernberg 2013, Wernberg et al.
2016, Oliver et al. 2017), including coral bleaching
(Moore et al. 2012), loss of kelp forests (Wernberg et
al. 2016, Arafeh-Dalmau et al. 2019, Rogers-Bennett
& Catton 2019, Thomsen et al. 2019, Filbee-Dexter et
al. 2020), loss of seagrass meadows (Strydom et al.
2020) and extensive mortality of benthic marine
invertebrates (Garrabou et al. 2009). These short-
term temperature extremes are predicted to increase
in intensity, frequency and duration throughout the
21st century as a consequence of climate change
(Oliver et al. 2019, Laufkötter et al. 2020). Therefore,
it is important to understand their impact on all levels
of biological organization, from genes to ecosystems,
in order to evaluate the ability of populations and
species to adapt to future climates (Coleman & Wern-
berg 2020, Coleman et al. 2020b, Gurgel et al. 2020).

Thermal stress not only drives local extinctions and
range shifts (e.g. Wernberg et al. 2016, Arafeh-Dal-
mau et al. 2019), but can also lead to phenotypic plas-
ticity or adaptation via directional selection that
favours thermally tolerant genotypes (Coleman &
Wernberg 2020). Standing genetic variation among
individuals plays a crucial role in the adaptability of
a population, as higher genetic diversity provides a
greater range of possible functional responses and
increases the population’s likelihood to withstand or
overcome a stressor (Hughes & Stachowicz 2004,
Reusch et al. 2005, Wernberg et al. 2018). Therefore,
adaptation towards increased tolerance of heat stress
is only possible when the variability in heat tolerance
is underpinned by genetic variation. On the other
hand, extreme events such as MHWs might also
cause an extreme loss in genetic diversity by elimi-
nating less heat-tolerant genotypes (Gurgel et al.
2020), potentially reducing overall adaptive capacity
to multiple future stressors (maladaptation).

Previous studies have examined the influence of
genotypes on fitness to environmental stress in mar-
ine organisms (Császár et al. 2010, Pease et al. 2010,
Foo et al. 2012), including genetic variation in ther-
mal sensitivity among genotypes in kelp populations
(Mabin et al. 2019, Liesner et al. 2020b). These stud-
ies have found heritable within-population variation
for traits that influence the persistence of populations

experiencing warming, suggesting that genetic vari-
ation may affect population resilience to heat stress.
To robustly predict the long-term consequences of
environmental stressors on natural populations, it is
therefore important to move beyond simply measur-
ing average population-level effects of a given ther-
mal stress, and instead consider the variation in
responses to stress among genotypes within popula-
tions (Clark et al. 2013, Coleman & Wernberg 2020,
Coleman & Wernberg 2021).

Kelp have a biphasic-heteromorphic life cycle that
alternates between microscopic haploid gametophyte
stages and macroscopic diploid sporophytes (Fritsch
1942). These complex life-cycle stages differ in their
thermal responses and survival limits (de Bettignies et
al. 2018, Martins et al. 2020). For example, reproduc-
tive maturation (sporogenesis and gameto genesis)
has a narrower temperature window than sporophyte
and gametophyte growth and survival (Bartsch et al.
2013, Martins et al. 2017, de Bettignies et al. 2018),
thus an increase in temperature may cause delays in
reproductive development (de Betti gnies et al. 2018,
Martins et al. 2020). In addition, temperature tolerance
thresholds vary between life stages, and gametophytes
appear to withstand higher temperatures than young
sporophytes (Bartsch et al. 2013, Martins et al. 2017).
These micro scopic stages influence recruitment suc-
cess yet are extremely vulnerable to different environ-
mental perturbations (e.g. Wiencke et al. 2006, Freder-
sdorf et al. 2009, Gaitán-Espitia et al. 2014, Borlongan
et al. 2018). Gametophyte stages are thus particularly
critical for the survival of kelp species in populations
with significant sporophyte mortality due to extreme
climatic events (Ladah & Zertuche-González 2007,
Barradas et al. 2011, Roleda & Dethleff 2011).

Many studies have found that, under laboratory
conditions, both life-cycle stages of kelp are severely
impacted by heat stress and changes in water tem-
perature. For example, high water temperature re-
sulted in decreased sporophyte survival rates (Gao et
al. 2016), substantial tissue deterioration (Andersen
et al. 2013) and reduced kelp biomass by significantly
decreasing growth rates and photosynthetic perform-
ances (Nepper-Davidsen et al. 2019). Effects on the
microscopic stages included increased mortality of
kelp zoospores and decreased germination rates
(Gaitán-Espitia et al. 2014), reduced growth of game-
tophytes (Mohring et al. 2014) and limited fertilisation
success (Oppliger et al. 2012). These studies suggest
that responses may differ dramatically for each life-
cycle stage under a warming climate scenario. Al-
though the effect of heat stress on kelps has been
well studied, the effect of increasing temperature
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variability, another characteristic of global change
(Oliver et al. 2019), or how thermal stress is presented
remains less understood. In general, only a few mod-
elling studies have simulated environmental variabil-
ity (e.g. pH) (Boyd et al. 2016), yet these variability
stressors have been largely ignored in experiments.

Here, we investigated the responses of the early
life stages of Australia’s dominant underwater forest-
forming species, Ecklonia radiata (Wernberg et al.
2019), to different MHW profiles. We measured the
performance of the haploid gametophyte and diploid
sporophyte life stages of 9 different genotypes under
constant temperature (19°C), a low-magnitude heat-
wave (23°C), a high-magnitude heatwave (27°C) and
highly variable temperature (19−23°C) conditions.
Treatments had an equal amount of cumulative heat
intensity (sensu Hobday et al. 2016) in order to better
understand if varying the way a consistent amount of
thermal stress is delivered affected responses. By cul-
turing different genotypes, we tested for genotype by
environment interactions (G×E) to determine whether
there was within-population variation (genetic varia-
tion) in response to thermal stress (Clark et al. 2013).

2.  MATERIALS AND METHODS

2.1.  Zoospore release and establishment of
 gametophyte cultures

Nine fertile sporophytes of Ecklonia radiata (Lami-
nariales) were haphazardly collected from 11 m
depth by SCUBA divers from Hamelin Bay, Western
Australia (34° 15’ 22.07” S, 115° 0’ 33.48” E) in April
2019. The thalli were immediately transported to
shore and processed for zoospore extraction fol -
lowing the methods of Alsuwaiyan et al. (2019).
Briefly, sorus tissue was excised and sori were gently
scraped, sterilised in a diluted iodine solution for
~30 s to eliminate surface epiphytes, rinsed with
0.2 μm filtered-autoclaved seawater, and excessive
mucilage wiped away with clean paper towels. After
cleaning, sori were stored between layers of moist
tissue paper in darkness for 18 h at 10°C. Zoospores
were released the following day by immersing the
sorus tissue in filtered, autoclaved seawater at 10°C.
Sori pieces from each sporophyte were placed into
separate sterile beakers and covered with 100 ml of
seawater for zoospore release. Separate zoospore
suspensions were sowed into Petri dishes and left
undisturbed for 18 h at room temperature to allow
the zoospores to settle. Sporophytes were con -
firmed to be unique genetic lines, as double digest

restriction-site associated DNA sequencing (ddRAD)
se quencing re vealed samples to differ in 7−10% of
loci (S. Vranken unpubl. data). These 9 unique ge-
netic lines were followed separately throughout the
experiment to as sess differences in responses within
and across life stages. After the settlement period,
water in the Petri dishes was renewed with 0.2 μm
filtered-autoclaved seawater enriched with Provasoli
solution (PES) (Provasoli 1968), with germanium
dioxide (GeO2) ad ded to prevent diatom contamina-
tion (Lüning & Neushul 1978). Culture medium was
changed after 2 d and weekly from then on. Petri
dishes were incubated in a controlled temperature
room under the following culture conditions: 18°C, 6 ±
3 μmol photons m−2 s−1 red light, and 12 h light:12 h
dark photo period. Red light was achieved by cover-
ing light tubes (Sylvania Luxline Plus FHO 24W/835)
with red cellophane. When high gametophyte bio-
mass had accumulated, Petri dishes were scraped us-
ing a sterilised cell scraper and the juvenile gameto-
phytes were transferred into 250 ml sterile cell
culture flasks filled with 100 ml PES. Gametophytes
were maintained in a vegetative stage without aera-
tion under the same conditions mentioned above.
The PES medium was then renewed every 2 wk.

2.2.  Experimental design

To create experimental treatments of gameto-
phytes, healthy gametophyte mass from each of the 9
genetic lines were first broken down into shorter
fragments using an electric blender (Li et al. 2017)
and then filtered through stacked mesh filters to
select sizes in the range of 30−60 μm in length. This
step was necessary to collect similar size gameto-
phytes, allowing evaluation of treatment effects on
gametophyte size. The fragments from each geno-
type (n = 9) were then sown into 16 labelled Petri
dishes containing PES, at an average density of
~110 fragments ml−1. Petri dishes were left in a con-
trolled temperature room (set at 18°C, 6 ± 3 μmol
photons m−2 s−1 red light, 12 h light:12 h dark photo -
period) for 2 wk to allow the gametophytes to settle.
After 2 wk, PES medium was renewed and Petri
dishes were moved to their respective treatments.
There were 4 replicate Petri dishes per genotype in
each treatment. Gametophytes were cultured under
50 μmol photons m−2 s−1 with a photoperiod of 12 h
light:12 h dark, and PES was replaced weekly. Four
experimental treatments were used to test the effect
of MHWs on gametophyte survival, growth and de -
velopment (Fig. 1). In the control treatment, gameto-
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phytes were cultured at a constant temperature of
19 ± 0.5°C, to represent ambient temperature condi-
tions. Heat treatments were designed to have equal
cumulative heat intensity (48°C cumulative intensity
above the control). In the ‘heat spikes’ treatment,
gametophytes were cultured at temperatures fluctu-
ating between 19 ± 0.5 and 23 ± 0.5°C every day for
23 d, then back to 19 ± 0.5°C for 5 d. In the low and
high MHW treatments, gametophytes were first cul-
tured at 23 ± 0.5°C for 12 d and 27 ± 0.5°C for 6 d,
respectively, and back to 19 ± 0.5°C. We used 23°C
for the low intensity MHW to represent the annual
maximum SST during the Western Australia 2011
MHW (Wernberg et al. 2013), and 27°C for the high
intensity MHW to represent the predicted more in -
tense MHWs. Cultures were examined under a
micro scope on Days 1, 7, 14, 21 and 28 of the experi-
ment, and 6 random fields of view (40× magnifica-
tion) were photographed.

2.3.  Measurements

From the photographs, the treatment effects were
de termined by measuring gametophyte survival, re -
productive success (sporophyte density), size and
relative growth rates (RGRs). Survivorship was deter-

mined by counting the number of viable gametophytes
over the initial density on Day 1. Viability of gameto-
phytic cells was assessed by the presence of plastids
with brown pigmentation (see inset of Fig. 2A) (Visch
et al. 2019).

2.3.1.  Reproductive success (sporophyte density)

Reproductive success was estimated following Lee
& Brinkhuis (1986):

Reproductive success (%) = [a / (a + b + c)] × 100 (1)

where a is the number of female gametophytes bear-
ing juvenile sporophytes, b is the number of female
gametophytes with oogonia and c is the number of
female gametophytes without oogonia.

2.3.2.  Size and RGR

The size of gametophytes (maximum branch length)
and juvenile sporophytes (thallus area) was recorded
on Day 21 of culture and measured using ImageJ
software. RGR d−1 was calculated using the following
equation:

RGR (% d−1) = [(lnL2 − lnL1) / t2 − t1] × 100 (2)

where L1 and L2 are the lengths (RGRL) or widths
(RGRW) at times t1 and t2 in days. Five male and 5 fe-
male gametophytes from every replicate dish were
haphazardly selected and their maximum length
measured on Day 1 (t1) and Day 21 (t2). For sporo -
phyte measures, the 3 largest sporophytes from every
replicate dish were selected and their maximum
length and width measured on Day 21 (t1) and Day 28
(t2). Random sampling was avoided, since sporophytes
that developed from eggs produced at different times
could have been selected, obscuring real trends in
growth rate (Kain 1965). For sporophytes, RGR was
calculated for the thallus area (RGRA) as:

RGRA = RGRL + RGRW (3)

2.4.  Statistical analysis

All analyses were performed in the R statistical
environment version 4.0.0 (R Core Team 2020). We
tested for significant differences in heat stress
responses using ANOVA, with a significance level of
α = 0.05. Normal distribution of standardized residu-
als was assessed using Shapiro-Wilks normality tests,
while homogeneity of variance was tested using Lev-
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ene’s test. Data were log transformed when the
assumptions of normality and homogeneity of vari-
ance were not met (Underwood 1997). A 1-way
ANOVA was performed to test for temperature treat-
ment effects on density, size and RGR of gameto-
phytes and sporophytes, with experimental tempera-
ture as a fixed factor with 4 levels. Separate analyses
were conducted for population density at each time
point (Day 7, 14 and 21 for gametophytes; Day 14, 21
and 28 for sporophytes). Day 28 was excluded from
the gametophyte density analysis because the major-
ity of gametophytes had undergone sporogenesis by
this time. Day 7 was ex cluded from the sporophyte
density analysis be cause sporophyte formation was
near zero at the 3 heat treatments. There was no sig-
nificant interaction be tween sex and experimental
temperature on gametophyte size and RGR (size p =
0.954, RGR p = 0.470); therefore, sex was pooled for all
gametophyte analyses (but see Fig. S1, Table S1 in the
Supplement at www. int-res. com/ articles/ suppl/ m672
p111 _ supp. pdf for analyses of both sexes separately).
Pearson’s correlations between traits were per-
formed on genotype means to assess potential for
intra- and inter-generational correlations. To deter-
mine the presence of genetic variation, a 2-way
ANOVA was performed to test for the effects of
genotype, experimental temperature and their inter-
action on density, size and RGR of gametophytes and
sporophytes. Genotype was modelled as a random
factor with 9 levels, whereas temperature treatment
was modelled as a fixed factor with 4 levels. For all
analyses, when ANOVA main tests yielded signifi-
cant results, they were followed by Tukey’s HSD post
hoc tests.

3.  RESULTS

3.1.  Population thermal tolerance

Gametophyte densities showed a very pronounced,
negative response to heat conditions over the experi-
ment (Fig. 2A, Table S2 in the Supplement). Densities
were lower in the 3 heat treatments compared to the
control at all times in the experiment (Day 7 F3,32 =
8.25, p < 0.001; Day 14 F3,32 = 11.92, p < 0.001; Day 21
F3,32 = 10.22, p < 0.001; Table S2), but did not differ
significantly among the heat treatments (Fig. 2A).
Generally, gametophyte densities decreased over
time to reach around 30−35% mortality rate across
these heat treatments, compared to 20% mortality in
the control (Fig. 2A). In contrast, temperature initially
showed significant effects on sporophyte density

(Day 14 F3,32 = 7.64, p < 0.001; Fig. 2B, Table S2), with
a delayed development of sporophyte observed in the
low and high MHW treatments. However, with longer
recovery time, post MHW, sporophyte densities in-
creased to reach around 45% by the end of the exper-
iment (Fig. 2B). Notably, densities on Day 14 were not
statistically significant between the control and heat
spikes, or among the 3 heat treatments (Fig. 2B).

Alsuwaiyan et al.: Genotypic variation in kelp heat responses 115

a

a

a
b

b

b
b

b

b

b
b

60

70

80

90

100

0 7

G
am

et
op

hy
te

 re
la

tiv
e 

de
ns

ity
 (%

)

Control
Heat spikes
Low MHW
High MHW

A

a

a

a

ab

a

a

b

a

b

a

a

0

10

20

30

40

50

60

Day of experiment

Sp
or

op
hy

te
 re

la
tiv

e 
de

ns
ity

 (%
)

B

b

a

0 7 14 21 28

14 21

Fig. 2. Mean relative density (±SE, n = 9) of Ecklonia radiata
(A) gametophytes and (B) sporophytes over time. Gameto-
phyte density was calculated by counting the number of vi-
able gametophytes over the initial density on Day 1,
whereas sporophyte density was calculated by counting the
number of female gametophytes bearing juvenile sporo-
phytes over the total number of female gametophytes ob-
served. Different lowercase letters indicate significant dif-
ferences between temperature treatments within time
points (Tukey’s HSD test, p < 0.05). Inset in (A) shows (a) vi-
able gametophytic cells containing intact plastids with
brown pigmentation and (b) lysed and non-viable gameto-

phytic cells. Inset in (B) shows juvenile sporophytes

http://www.int-res.com/articles/suppl/m672p111_supp.pdf
http://www.int-res.com/articles/suppl/m672p111_supp.pdf


Mar Ecol Prog Ser 672: 111–121, 2021

Heat treatments negatively affected both gameto-
phyte size (F3,32 = 8.00, p < 0.001; Fig. 3A, Table S3 in
the Supplement) and RGR (F3,32 = 35.28, p < 0.001;
Fig. 3B, Table S3). Size and RGR, in the control treat-
ment, averaged 0.62 mm and 5.33% d−1, respec-
tively, and both decreased significantly with the 3
heat treatments, but with no significant difference in
mean values among the heat treatments (Fig. 3A,B).
Similarly, sporophyte size was susceptible to the heat
treatments (F3,32 = 6.18, p = 0.002; Fig. 3C, Table S3),
but not RGR (F3,32 = 1.57, p = 0.216; Fig. 3D, Table
S3). Sporophyte size was significantly larger in the
control (0.034 mm2) than in the 2 MHW treatments,
however, size did not vary between the control and
heat spikes. Among the heat treatments, heat spikes
led to larger sporophytes, and size decreased by
around 75% in the high MHW treatment, though
these differences were not significant (Fig. 3C).

Pearson’s r correlation showed no significant corre-
lation between gametophyte density and sporophyte
density in any of the 4 experimental treatments
(Fig. S2A−D in the Supplement), nor between game-
tophyte size and gametophyte density (Fig. S2E−H).
However, sporophyte size was significantly corre-
lated with sporophyte density (Fig. S2I−L).

3.2.  Interactive effects of genotype

MHWs affected density and growth patterns of
Eck lonia radiata early life stages, but the magnitude
of responses to the stressful temperatures were de -
pendent on genotypes as well (Fig. 4, Table 1; for re-
action norms across all 4 temperature treatments see
Fig. S3 in the Supplement). There was a significant
G×E interaction in gametophyte size (F24,108 = 2.52,
p < 0.001; Fig. 4B, Table 1) and RGR (F24,108 = 2.22, p =
0.003; Fig. 4C, Table 1), indicating that genotypes dif-
fered in their plastic response to temperature. Sporo-
phyte density (Fig. 4D) and size (Fig. 4E) also showed
the same pattern of genetic variation for plasticity
with the significant G×E interaction (density F24,108 =
2.14, p = 0.004; size F24,108 = 2.64, p < 0.001; Table 1).
The ob served thermal reaction norms showed
changes in the ranking of genotypes across tempera-
ture treatments in each of the 4 response variables;
however, for gametophyte RGR and sporophyte size,
the magnitude of inter-genotypic variance decreased
in the high MHW treatment (Fig. 4). For sporophyte
RGR, reaction norm slopes were more similar, but still
differed in magnitude (F8,108 = 8.29, p < 0.001; Fig. 4F,
Table 1). Together, these results show that the im -
pacts of the MHW treatments on E. radiata early life
stages are highly variable among genotypes.

4.  DISCUSSION

Climatic extremes (i.e. MHWs) have caused devas-
tating effects on marine ecosystems with significant
ecological and socio-economic consequences (Smale
et al. 2019), in particular loss of kelp forests (Wern-
berg et al. 2016, Arafeh-Dalmau et al. 2019, Rogers-
Bennett & Catton 2019, Thomsen et al. 2019, Filbee-
Dexter et al. 2020) and erosion of their adaptive
capacity (Coleman et al. 2020a, Gurgel et al. 2020).
The effects of MHWs on populations are strongly re -
lated to genetic diversity among populations (Wern-
berg et al. 2018). In our study, we found that MHWs
significantly reduced Ecklonia radiata gametophyte
performance and delayed sporophyte recruitment.
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We also found some variation in thermal tolerance
linked to genetic variation, as indicated by the signif-
icant G×E interaction, suggesting the presence of
heritable variation in tolerance to thermal stress.

4.1.  General temperature effects

High water temperatures generally
result in a de cline in gametophyte
growth and survival (Mohring et al.
2014, Shukla & Edwards 2017), be -
cause temperature-induced damage to
kelp often negatively affects physio -
logical performance (i.e. growth and
photosynthesis) (Borlonganetal.2018).
We found that E. radiata gametophytes
were negatively af fected by heat
spikes and the 2 MHW treatments.
This result is not surprising, given that
E. radiata gametophytes can survive
and grow in temperatures from 12−
26°C but experience a decline in
growth and survival outside the 18−
23°C range (Mohring et al. 2014). Our
results match other studies which
found that E. radiata gametophytes
could grow in temperatures up to
25°C but growth decreased by >50%
above 22°C (e.g. Mabin et al. 2013),
suggesting that gametophytes may
have undergone heat-related dam-
age. The most important finding in our
study was, however, that different
heat treatments (heat spikes, low
MHW and high MHW) had similarly
negative effects on gametophytes.
Given that all 3 heat treatments had
equal cumulative heat intensity, this
observation suggests that gameto-
phyte survival, size and RGR may be
more influenced by total heat expo-
sure rather than specific warming pro-
files of heat intensity. While a ramp up
to +8°C in a day, as in our temperature
treatments, is unlikely or rare in this
system, fluctuations of 3−5°C within 4−
24 h occur regularly (see Smale &
Wernberg 2009). Still, the observed re -
sponse in gametophyte performance
across the 3 heat treatments may be a
response to an instantaneous heat
shock rather than the mode of our heat
treatments. Further, the use of PES in
our experiments may have contri -

buted to the observed results; larger effects might
have been observed with the use of ambient seawa-
ter, where nitrogen is less available. Previous studies
have found that nitrogen modulates kelp thermal
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plasticity, alleviating the negative effects of high sea-
water temperatures on kelp growth and photosyn-
thesis (Fernández et al. 2020), although this may be
species-specific.

Reproductive success was affected by MHWs, as
gametophytes delayed development of sporophytes
during the MHW exposure days. This may reflect a
mechanism by which gametophytes under non-lethal
conditions, such as high but sub-lethal temperatures,
have the ability to remain in a dormant or suppressed
growth state for extended periods until conditions
become favourable for growth and recruitment (Car-
ney & Edwards 2010, Schoenrock et al. 2021), and
this may be a trait that enables rapid recovery from
stress. This prolonged vegetative growth of gameto-
phytes may also result in gametophytes developing
more female cells, which may potentially develop
into oogonia, thus increasing sporophyte recruitment
(Bolton & Levitt 1985, Liesner et al. 2020b). In our
experiment, recovery occurred subsequently and
sporo phyte density almost reached that of controls by
the end of the experiment. Thus, sub-lethal effects of
MHWs on kelp gametophyte may be transient, with
maturation and sporophyte recruitment resuming as
soon as favourable environmental conditions prevail.

The absence of sporophytes during the MHW days,
however, does not necessarily mean that sporophytes
are incapable of surviving and growing at these tem-
peratures but could instead indicate that no effective

fertilization had occurred (Mabin et al.
2013). Moreover, maternal links may exist
between life stages, affecting recruitment
phenotype (Allen & Marshall 2013), and
can also determine early offspring fitness
under stressful conditions (Marshall 2008).
However, maternal effects do not always
persist across life-history stages (Allen &
Marshall 2014) and so are not necessarily
a strong indicator of adult fitness. In our
study, we found no correlations between
the 2 life-history stages.

A significant finding in our study is that
sporophyte production was not suppressed
during the heat spike treatments, with no
significant differences in sporophyte den-
sity between heat spikes and the control.
This result suggests that while prolonged
periods of high heat are a key limitation to
reproduction, heat stress that includes
even short periods of more optimal temper-
atures, as in the heat spikes treatment, are
enough to maintain reproduction. In addi-
tion, sporophyte RGRs did not differ be-

tween temperature treatments at all, whereas size de-
clined in the 2 MHW treatments and was significantly
correlated with sporophyte density. This correlation
could explain the patterns in size observed in our
study, where the delayed development of sporophytes
during the MHW exposure days may have resulted in
younger and subsequently smaller sporophytes.

4.2.  G×E interactions

Genotypic variation in stress tolerance may provide
resilience to future climate change in species and
populations as it allows adaptive responses to occur
(Wernberg et al. 2018). Our thermal reaction norm
results showed that genotypes differed in their sus-
ceptibility to MHWs in both life-history stages. The
significant G×E interactions observed indicate that
the tested genotypes might differ in their thermal
plasticity or have inherent genetic variation re lated to
temperature tolerance. From the reaction norms, it is
clear that MHW decreased the magnitude of inter-
genotypic variance among genotypes in some re -
sponse traits (i.e. gametophyte RGR and sporo phyte
size), but the ranking order of genotypes still changed
across temperature treatments. This indicates varia-
tion in genotype responses to the MHW treatment,
which coincides with emerging evidence suggesting
that variation in stress tolerance among different
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Source of    df               Gametophytes                       Sporophytes
variation                    MS          F            p               MS          F            p

Density
G                  8        292.29      1.46       0.182      5032.11    18.31   <0.001
E                   3      2282.03    11.40    <0.001      1128.67      1.92      0.154
G×E             24       200.26      1.00       0.475        588.38      2.14      0.004
Residual     108      200.61                                    274.84        

Size
G                  8            0.01      5.79    <0.001            1.77    24.27   <0.001
E                   3            0.06    10.83    <0.001            3.73    19.41   <0.001
G×E             24           0.01      2.52    <0.001            0.19      2.64   <0.001
Residual     108          0.00                                        0.07        

RGR
G                  8            2.53      5.50    <0.001        425.75      8.29   <0.001
E                   3          49.38    48.32    <0.001        247.20      4.66      0.011
G×E             24           1.02      2.22       0.003          53.03      1.03      0.433
Residual     108          0.46                                      51.34

Table 1. ANOVA main test results testing for the effect of genotype (G;
random factor), experimental temperature (E; fixed factor) and their inter-
action (G×E) on density, size and relative growth rate (RGR) of Ecklonia
radiata gametophytes and sporophytes. Significant results (p < 0.05) are
highlighted bold. Sporophyte size data were transformed to meet the as-
sumptions of ANOVA (before log transformation: p < 0.01; after log trans-

formation: p = 0.162)
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genotypes can contribute to the magnitude of re -
sponse to extreme events (Wernberg et al. 2018,
Coleman & Wernberg 2020, 2021, Cole man et al.
2020a, Gurgel et al. 2020). Previous studies on ther-
mal reaction norms have also shown G×E interac-
tions, indicating variation in temperature tolerance
among genotypes (Clark et al. 2013, Mabin et al.
2019, Liesner et al. 2020b). For example, Mabin et al.
(2019) found significant morphological variation in E.
radiata gametophytes from different lineages in
response to different temperature and light levels,
which they linked to possible maternal and genetic
effects. Thus, selection for more tolerant genotypes
may lead to the gradual evolution of populations with
increased thermal tolerance.

Furthermore, genetic variation is an important
characteristic for natural selection in populations
under stressful conditions (Chevin et al. 2010, Kelly
2019) that could have substantial effects on the adap-
tive capacity of kelp populations in a warming envi-
ronment (Coleman & Wernberg 2020, 2021, Vranken
et al. 2021). Indeed, understanding G×E interactions
is key to identifying the relations between stress,
plasticity and adaptive evolutionary potential within
populations (Liesner et al. 2020b). Gene flow is one
process that could increase or decrease the magni-
tude of G×E interactions, and with the limited disper-
sal capacity in kelp populations and low amounts of
gene flow from distant populations, this could facili-
tate local adaptation (King et al. 2018, Liesner et al.
2020a, Miller et al. 2020, Vranken et al. 2021) and
potentially maladaptation. MHWs may, however, be
too extreme for local adaptation and instead lead to
massive and cryptic loss of genetic diversity within
populations (Gurgel et al. 2020) that may compro-
mise their longer-term ability to respond to change.
Indeed, such losses of genetic diversity have been
observed in kelp populations following an extreme
MHW event (e.g. up to 66% loss of genetic diversity
in Scytothalia dorycarpa), which surpasses loss of
genetic diversity after extreme events in comparison
to terrestrial species (e.g. 10−14% average loss)
(Jangjoo et al. 2016, Poff et al. 2018).

5.  CONCLUSIONS

Extreme warming events can have devastating ef -
fects on kelp forests, with response (Wernberg et al.
2018) and recovery determined by genetic diversity
(Coleman & Wernberg 2020, Coleman et al. 2020a,
Gurgel et al. 2020, Vranken et al. 2021). Overall, we
found that warming events (i.e. heat spikes and

MHWs) significantly affected the development of
Ecklonia radiata early life stages. Notably, we found
no differences in gametophyte performance among
the different MHW profiles, implying that response
to thermal stress might be dependent on total heat
exposure rather than specific profiles of heat inten-
sity. However, temperature is only one factor in a
complex multi-stressor environment, and other envi-
ronmental stressors may modify a population’s ability
to tolerate extreme events.

We also found some evidence for consistent varia-
tion in thermal tolerance among genotypes from a
single population, suggesting the presence of herita-
ble variation in tolerance to thermal stress. This abil-
ity to respond to stress will likely increase when
inter-population differences are taken into account
(Clark et al. 2013). Therefore, to robustly predict the
ecophysiological response of kelp populations to
extreme events, future studies should account for
genotypic variation in heat response within and
between populations. Moreover, by designing strate-
gies such as restoration to recover lost or declining
kelp populations, we may be able to harness intra-
population genetic variation in thermal response to
boost the resilience of populations to climate change.
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